


The observation that sediment accumulation rates in the oceans increased several-fold
during thelast 5 Ma (Hay et al., 1988; Peizhen et al., 2001; Molnar, 2004), in
association with multiple glaciations during this time interval hasled to the common
assumption that mountain denudation increases during glaciations with the corollary
that glaciers are more effective than rivers at eroding landscapes (e.g., Yanites and
Ehlers, 2012; Herman et al., 2013). Indeed, glacial erosion is proposed to be a first-
order control on mountain range exhumation and isostatic adjustments through the
removal and evacuation of crustal material from orogens (e.g., Molnar et al., 1990;
Montgomery et al., 2001; Burbank, 2002; Blisniuk et al., 2006; Egholm et a., 2009).



Braun and Sambridge (1997) and Syvitski and Milliman
(2007) provide means of estimating sediment discharge that
helps constrain erosion rates, but glacial erosion is a harder
cat to skin.

Fluvial erosion is primarily controlled by geomorphic and
tectonic influences (basin area and relief), geography
(temperature, runoff), geology (lithology, ice cover), and
human activities (reservoir trapping, soil erosion),



Glacial erosion by abrasion and plucking




Glacial Buzz saw

Rock uplift produces mountain relief

As relief grows, erosion increases,
reducing relief
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Some key observations and oversights of Yanites and Ehlers

Measuring localized changesin erosion rate (e.g. using
thermrochronl ogical methods) does not capture the true spatial
complexity of mountain denudation

Glacial erosion rates are highly variable over arange of time scales so
that measurements made at relatively short time scales do not capture
the full range of denudation rates.

Glacial erosion is highly sensitiveto uplift rates. Faster rates of uplift
limit glacial erosion by elevating mountains above ELA

Glacial denudation increases as the pace of glacial/interglacial cycles
Increases (e.g. 100 kato 40 ka)

Glacial erosion rates are highly non-linear and tend to decrease with
time.

Some Oversights

They do not consider temporal or spatial changes in bedrock geology

They underscore the importance of the relative timing of orogenic
uplift versus glacial history

Over geological time scales sedimentary rocks are eroded, |eaving
more resistant rocksto be eroded by theice
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Back-stepping glacier terminus results in order of
magnitude decrease in sedimentation at Shaldrill site
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Volume of sediments vs Latitude
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Figure 4: Millennial scale <Er> vs latitude
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The time averaged erosion rate is defined as;

E=\olg/(Ag* T)

Where Vol, = Source Rock Equivalent volume A is the effective area of the drainage basin, which includes
all areas that potentially supplied sediment to the fjord or bay, and

T=time span of accumulation of each seismic unit

The source rock-equivalent volumes were calculated using the following equation:
\ol Rx ~ (Qsed / QsourCP) VOISed
where,
e = average dry density of the sediments,
Vol s = volkigted¥. siliciclastic sediments of each seismic unit, [m3)].
\ol g, = source rock-equivalent volume of sediments, [m?3].
Qsource = estimate of the average density of the source rocks,

The densitjkgésaffor the parental rock (Qg,ee) Was 2700 kg/m3, a commonly used value
for metasedimentary and igneous rocks.



To understand the effects of glacial systems on the evolution of mountain
ranges, it is necessary to consider erosion on tectonic time scales.
Generally, studies of glacier effects on mountain denudation rely on the
Interpretation of exhumation rates derived from low temperature
thermochronometersto estimate million-year timescale erosion rates (e.g.,
Spotilaet a., 2004; Koppes et a., 2009). However, the erosional
component of thermal history of the minerals used for these analyses is
convolved with the regional thermal structure of the crust, thermal
Influence of local magmatic events, and recent tectonic evolution, of
which only the latter isrelatively well known in our study areas.
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Transantarctic Mountains formed prior to glaciation of the continent and underwent
significant denudation with onset of glaciation during the Eocene-Oligocene. Rates of
erosion since then have been minimal, resulting in alandscape that is frozen in time.

Uplift of the AP mountain belt was time transgressive but occurred after onset of
glaciation in the latest Eocene.
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Neogene stratal packages indicate high rates of
sediment flux to the margin and approximately 1 km
of denudation of the northern AP
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We obtained values of 0.11+0.04
mm/yr for the youngest unit
(timespan: ~0-2.9 Ma; volume:
~3.5x10% kms3), 0.12+0.05 mm/yr for
the next oldest unit (timespan:
~2.9-5.3 Ma; volume: ~2.9* 10%
km?3), and 0.09+£0.03 mm/yr for the
oldest unit (timespan: ~5.3-9.5 Mg;
volume: ~3.510* km?3). This
equates to an increase in the rate of
denudation of 25-30% after ~5.3 Ma
and to at least ~1 km of denudation
over thelast 10 million years
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There are no comparable million-year time scale estimates of E for Patagonia. However,
extensive thermochronol ogy datasets show that the youngest apatite (U-Th)/He and fission-
track ages are ~1-2 Ma north of ~45° S, and increase rapidly southward, reaching values of
~10-15 Ma south of ~45° S (Thomson et al., 2010; Fig. 9). This pattern implies roughly aten-
fold decrease in exhumation rates, from ~2-4 to 0.2-0.3 mm/yr (with the assumptions that
exhumation is entirely due to erosion, linear temperature-depth path, apatite fission-track
closure temperatures ~100-125 °C, geothermal gradient ~25-35 °C/km for the whole study

region).

E, Thermochronolgy ages vs latitude Comparison of the existing mountain

%"Lﬂ;, E % exhumation and erosion rate datasets. Squares
a
O

#‘Hﬁ- -ﬁ represent apatite fission track ages (red:

Patagonia; pink: Antarctic Peninsula), and
circles represent our erosion rates data (blue:

3 AT Patagonia; light blue: Antarctic Peninsula). The

’ 1 narrower grey band highlights the approximate
i o ’ $ trend defined by the youngest apatite fission
il A ? % i 01 track (AFT) datafor both regions (increasing
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ages reflect a decrease in exhumation rate). The
wide grey band highlights the general trend of
decreasing millennial scale erosion rates with
increasing latitude (this study). AFT datafor
Patagoniaare from Thomson et al. (2010),

AFT and (U-Th)/He ages for theAntarctic
Peninsula are from Guenthner et al. (2010).
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