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Abstract

The Himalayan range exposes a spectacular assemblage of metamorphic
rocks from the mid- and deep crust that have fostered numerous models
of how the crust responds to continental collisions. Recent petrogeneti-
cally based petrologic and geochronologic studies elucidate processes with
unprecedented resolution and critically test models that range from contin-
uum processes to one-time events. The pronounced metamorphic inversion
across the Main Central Thrust reflects continuum thrusting between ca.
15 and 20 Ma, whereas exposure of ultrahigh-pressure rocks in northwest-
ern massifs and syntaxis granulites reflects singular early (≥45 Ma) and late
(≤10 Ma) exhumation events. Multiple mechanisms including wedge col-
lapse and flow of melt-weakened midcrust are debated to explain pressure-
temperature trajectories, patterns of thinning, and thermal overprinting. A
geochronologic revolution is under way in which spatially resolved composi-
tions and ages of accessory minerals are combined in a petrogenetically valid
context to recover specific temperature-time points and paths. Combined
chemical and chronologic analysis of monazite is now well established and
titanite is particularly promising, but recent zircon data raise questions about
anatectic rocks and their use for investigating tectonism.
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Lesser Himalayan
Sequence (LHS):
mainly Proterozoic
metasedimentary
sequence, typically
greenschist to
amphibolite facies;
occurs below the GHS

Greater Himalayan
Sequence (GHS):
Late Proterozoic to
Paleozoic
metasedimentary
sequence, typically
upper amphibolite to
lower granulite facies;
occurs above the LHS
and below the THS

Tethyan Himalayan
Sequence (THS):
mainly Late
Proterozoic to
Mesozoic
metasedimentary
sequence, typically
unmetamorphosed to
lower amphibolite
facies; occurs above
the GHS

Main Boundary
Thrust (MBT):
thrust contact
separating the LHS
from foreland
sediments (Siwaliks)

Lesser Himalayan
Duplex (LHD):
series of in-sequence
thrusts in the LHS
forming a duplex that
arches overlying GHS
and THS rocks

Main Central Thrust
(MCT): thrust
contact separating the
GHS from the LHS

INTRODUCTION

Himalayan geology unquestionably has played a central role in shaping our understanding of
orogenesis. After all, Himalayan thrust-belt architecture, rock-type distributions, geomorphol-
ogy, and orogen-parallel and -perpendicular extension have given rise to numerous models—
orogenic wedges, lower crustal flow, synorogenic magmatism, eclogite exhumation, origins of
gneiss domes and oroclinal bends, etc.—and stimulated research linking geomorphic and tectonic
processes. Metamorphic rocks have inspired and continue to inspire many of these models and thus
warrant particular consideration. Compared with other orogens, two practical advantages attend
Himalayan metamorphic studies. First, along-strike consistency of rock types and structures allows
age-equivalent comparisons of different parts of the orogen and helps screen for local anomalies.
Second, extreme youth facilitates chronologic analysis. For example, typical microanalytical un-
certainties of 2% provide ≤1 Myr resolution in the Himalaya, whereas the same chronologic
resolution in Paleozoic or Proterozoic orogens requires other analytical methods that attain <0.1
to 0.5% uncertainties.

This review is basically separated into two parts. The first and longer part documents pat-
terns and summarizes regional geology, quantitative pressure-temperature conditions and paths,
unusual occurrences of eclogites and granulites, and accessory mineral geochronology and geo-
chemistry. The second part addresses tectonic models, emphasizing how observations distinguish
(or not) among potential tectonic drivers. Given that over 600 articles on Himalayan metamor-
phism have been published, only a minority of studies can be discussed here. Metamorphic domes
in southern Tibet and textural links between metamorphism and deformation are not considered.
I also emphasize studies whose observations are reliably and quantitatively linked to petrogenesis
and pressure-temperature-time evolution.

GEOLOGIC BACKGROUND: METAMORPHIC SANDWICHES
AND ANOMALIES

Regional geology is described at length by Yin & Harrison (2000) and Yin (2006), so the following
section focuses on only the most salient points related to metamorphism and its tectonic drivers.
The Himalaya span approximately 2,000 km, from Pakistan in the west through northwestern
India, Nepal, and Bhutan, to southeastern Tibet and northeastern India (Figure 1). Collision
between India and Asia commenced ca. 50–55 Ma (e.g., see summary in Najman et al. 2010),
but motion on major thrusts within the metamorphosed portion of the orogenic wedge generally
commenced ca. 25 Ma. Overall, the orogen exhibits a distinct arcuate form, with sharp bends at the
western (Nanga Parbat) and eastern (Namche Barwa) syntaxes (Figure 1), where major drainages
cross the orogen.

A tripartite lithotectonic subdivision—Lesser, Greater, and Tethyan Himalayan Sequences
(LHS, GHS, and THS, respectively)—frames Himalayan metamorphic studies (Figure 1). The
LHS was emplaced above unmetamorphosed foreland sediments (Siwalik Group) along the
Main Boundary Thrust (MBT). Numerous smaller thrusts have been proposed within the LHS,
especially to form the Lesser Himalayan Duplex (LHD). This duplex is important structurally
because it accommodated a significant portion of Indo-Asian convergence and tilted overlying
LHS, GHS, and THS rock units to expose obliquely the Himalayan metamorphic core (DeCelles
et al. 2001, Robinson et al. 2003). The GHS was emplaced above the LHS along the Main
Central Thrust (MCT). Additional thrusts have been proposed within the GHS, but structural
repetitions are less clear within this unit. All major thrusts are interpreted to have soled into
a master detachment surface—the Main Himalayan Thrust (MHT). The THS shares broad
stratigraphic similarities with the GHS, but in most regions was juxtaposed against it along a
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Figure 1
(a) Digital elevation model of the Himalaya and neighboring regions (Kohn 2007; modified with permission from the Mineralogical
Society of America). The white polygon outlines the region illustrated in panel b. (b) Simplified regional geologic map of the Himalaya
(modified from Yin & Harrison 2000) illustrating main lithotectonic units, general structural trends, locations of cross sections (thick
black lines), thermobarometric transects (blue boxes), and eclogites and granulites (hexagons). (c–e) Western, central, and eastern cross
sections (modified from Pearson & DeCelles 2005, Long et al. 2011, Webb et al. 2011). Pluton thicknesses are schematic. Geologic
abbreviations: LHD, Lesser Himalayan Duplex; MBT, Main Boundary Thrust; MCT, Main Central Thrust; MFT, Main Frontal
Thrust; MHT, Main Himalayan Thrust; STDS, South Tibetan Detachment System. Geographic abbreviations: D, Darondi; Ev,
Everest; K, Kumaun; Kg, Kaghan; L, Langtang; Ma, Marsyandi; Mo, Modi; NP, Nanga Parbat; Ny, Nyalam; NBS, Namche Barwa
syntaxis; NPS, Nanga Parbat syntaxis; Sk, Sikkim; TM, Tso Morari; Zk, Zanskar.
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Main Himalayan
Thrust (MHT):
décollement
separating orogenic
wedge and structurally
higher Asian crust
from structurally lower
Indian lithosphere

South Tibetan
Detachment System
(STDS): extensional
structure separating
the THS from the
GHS

series of extensional shear structures called the South Tibetan Detachment System (STDS). The
STDS could either merge with the MHT at depth (Burchfiel & Royden 1985) or shallow to the
north, forming backthrusts (Yin 2006).

Composite geologic maps and cross sections (Figure 1) illustrate the consistency of stratigraphy
and structure along strike. Although each area differs in detail, the LHS, GHS, THS, MBT, MCT,
and STDS (with one possible exception) can nonetheless be traced for ∼2,000 km. Cross sections
from the northwestern, central, and eastern Himalaya (Figure 1) consistently show a broad central
duplex of LHS rocks that warps the MCT, LHS, GHS, and THS into a broad anticline. Toward the
foreland, broad synclines and outliers of the THS and GHS are particularly obvious in Bhutan and
central Nepal (Figure 1). Difficulties distinguishing GHS and THS lithologies in these outliers
can cause divergent stratigraphic assignments. Toward the hinterland, the same LHS-GHS-THS
units and the MCT and STDS dip uniformly to the north and northeast. Thus, the moderate
northward dip on the MCT is not a primary feature; instead, the thrust formed with a shallow
dip, similar to the modern MHT, and was passively tilted during later duplex formation (DeCelles
et al. 2001, Robinson et al. 2003).

With respect to metamorphic distributions, the LHS-GHS-THS assemblage can be consid-
ered a metamorphic “sandwich,” in which low-grade THS and LHS rocks bound intervening
high-grade GHS rocks (Figures 2 and 3). The sandwich is generally higher grade in hinterland
sections and lower grade in structural outliers closer to the foreland. In hinterland sections that
have been studied more completely, the LHS typically increases in metamorphic grade structurally
upward from greenschist (chlorite zone) at its lower MBT boundary through the garnet zone
(Figure 2a) to middle amphibolite facies (staurolite/kyanite zone) at its upper MCT boundary. A
clear lithologic change usually defines the MCT, but this happens to nearly coincide with the kyan-
ite isograd in many sections (Le Fort 1975). The upward increase in metamorphic grade continues
within the GHS, which typically ranges from middle amphibolite facies (kyanite zone) at the MCT
(Figure 2b) to lower granulite facies (sillimanite–K-feldspar, cordierite, and spinel anatectites;
locally orthopyroxene-bearing metabasites) in its metamorphic core, where partial melts are
common (Figure 2c,d). In some sections, the STDS truncates GHS isograds at upper amphibolite
to granulite facies, but in others, a continuous decrease in metamorphic grade occurs at the top
of the GHS (Figure 2e). The THS typically decreases in metamorphic grade from middle or
lower amphibolite facies at its lower STDS contact to unmetamorphosed structurally upward.

Figure 3 illustrates typical metamorphic patterns in the northwestern, central, and eastern
Himalaya. The MCT and STDS demarcate the LHS-GHS-THS boundaries. In the Zanskar
region of northwestern India (Figures 1 and 3a), sub-garnet-zone LHS rocks are exposed
in the Kishtwar Window (KW), with rapid increases to kyanite- and sillimanite-zone lower
GHS rocks structurally upward (e.g., Walker et al. 2001). A more gradual increase to the
sillimanite–K-feldspar zone occurs within the GHS, with a rapid decrease in metamorphic grade
to sub-garnet-zone GHS and THS rocks near the STDS, which extensionally thins and truncates
metamorphic isograds (e.g., Walker et al. 2001). To the south, however, in the Rampur Window
(RW) region, no truncation or telescoping of metamorphic zones is observed at the GHS-THS
contact, and the STDS may have little displacement or be absent altogether. Central Nepal
(Figure 3b) also shows a continuous increase in metamorphic grade structurally upward within
the LHS and GHS (see Pêcher 1989). A rapid decrease in metamorphic grade within the THS is
spatially associated with the STDS (Schneider & Masch 1993). Indeed, the central Nepal section
(Figure 3b) has long served as the paradigm of Himalayan metamorphism (Le Fort 1975). In cen-
tral Bhutan (Figure 3c), although a rapid increase in metamorphic grade occurs across the MCT
(Daniel et al. 2003, Long & McQuarrie 2010), some metamorphic features differ in comparison
with other sections. For example, garnet-zone THS rocks occur in a downwarped syncline in the
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Figure 2
Photomicrographs of typical Himalayan metamorphic rocks. (a–c) Central Nepal Grt-grade Lesser Himalayan Sequence, Ky-grade
structurally lower Greater Himalayan Sequence, and Sil-Kfs-grade structurally higher Greater Himalayan Sequence. (d ) High-grade
Greater Himalayan Sequence from Sikkim showing Spl + Qtz symplectites overprinting Sil + Bt. Adapted from Rubatto et al. (2013)
with kind permission from Springer Science and Business Media. (e) Grt-grade Tethyan Himalayan Sequence from central Bhutan.
( f ) Omphacite from Kaghan ultrahigh-pressure eclogite with inclusion of coesite that has partially reacted to quartz (modified from
O’Brien et al. 2001). Abbreviations: Bt, biotite; Coe, coesite; Grt, garnet; Ilm, ilmenite; Kfs, K-feldspar; Ky, kyanite; Omp, omphacite;
Qtz, quartz; Rt, rutile; Sil, sillimanite; Spl, spinel.
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Figure 3
Metamorphic maps and cross sections illustrating high-grade GHS rocks sandwiched between lower-grade LHS and THS rocks.
Heavy black lines show cross-section locations. (a) Northwestern India. (b) Central Nepal. (c) Central Bhutan. The STDS truncates or
telescopes isograds in northwestern India and central Nepal, whereas metamorphic grade changes smoothly from GHS to THS in the
Shemgang region of central Bhutan. See Supplemental Material for references. Geologic abbreviations: GHS, Greater Himalayan
Sequence; LHS, Lesser Himalayan Sequence; MBT, Main Boundary Thrust; MCT, Main Central Thrust; MHT, Main Himalayan
Thrust; STDS, South Tibetan Detachment System; THS, Tethyan Himalayan Sequence. Mineralogic abbreviations: Bt, biotite; Di,
diopside; Grt, garnet; Kfs, K-feldspar; Ky, kyanite; Sil, sillimanite; Tr, tremolite; Ttn, titanite. Mountains: A, Annapurna; M, Manaslu;
S, Shishapangma. Towns: Ga, Gasa; Go, Ghorka; J, Jakar; L, Langtang; M, Manang; P, Pokhara; S, Shemgang; T, Trongsa; U, Ura.

Shemgang region but show no obvious metamorphic discontinuities adjacent to the GHS (Long
& McQuarrie 2010, Corrie et al. 2012). Moreover, the GHS shows dip- or transport-parallel
changes in metamorphic grade: Sillimanite-zone or even sillimanite–K-feldspar-zone rocks occur
toward the hinterland, whereas only kyanite-zone rocks occur toward the foreland (Swapp &
Hollister 1991, Long & McQuarrie 2010). This across-strike pattern may be common: Outliers
near Shimla in northwestern India (Figure 3a) and Kathmandu in central Nepal (Figure 3b)
are lower grade than their putative hinterland counterparts, but stratigraphic and structural
continuity with across-strike GHS rocks is less assured.
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UHP:
ultrahigh-pressure;
UHP metamorphic
rocks contain coesite
or diamond

Grt: garnet

Bt: biotite

Hbl: hornblende

Pl: plagioclase

Ms: muscovite

Qtz: quartz

Alsi: aluminosilicate
(andalusite, kyanite, or
sillimanite)

Even this brief discussion illustrates several prominent features of Himalayan metamorphism.
First, along-strike consistency is truly amazing: The LHS-GHS-THS units exhibit consistent
metamorphic grades over distances approaching 2,000 km. Second, metamorphic grade is con-
sistently inverted from the LHS through the GHS, again along a strike length of approxi-
mately 2,000 km. Last, the STDS commonly telescopes or truncates metamorphic grade from
the top of the GHS through the base of the THS. All these facts have ignited intense de-
bate over the tectonic drivers of Himalayan metamorphism and, conversely, the insights that
Himalayan metamorphic rocks provide into collisional tectonics. Common questions include
the following: Did thrusting along the MCT drive inverted metamorphism between its hang-
ing wall and footwall and if so, how? How do partial melting and high erosion rates influ-
ence metamorphic and tectonic evolution? Was extensional shear along the STDS a short-lived
event, or was it long lasting and crucial for controlling exposure of the high-grade Himalayan
core?

Local metamorphic anomalies punctuate this broad backdrop. Ultrahigh-pressure (UHP)
eclogites near the Nanga Parbat syntaxis and at Tso Morari in the northwest Himalaya, dated at
45–55 Ma (e.g., de Sigoyer et al. 2000, Kaneko et al. 2003) (Figure 2f ), have sparked debate re-
garding early deep metamorphism. Granulite-facies overprinting of young eclogites (≤∼25 Ma;
Corrie et al. 2010) from eastern Nepal to western Bhutan has similarly fostered discussion
regarding pressure-temperature (P-T) evolution of deeply buried rocks and mechanisms for
high-T exhumation during the latter half of the orogen’s evolution. Last, the Nanga Parbat
and Namche Barwa syntaxes expose young (≤25 Ma) granulite-facies rocks and possibly reflect
complex interaction among structural evolution, partial melting reactions, and focused erosion
(Zeitler et al. 2001b).

THERMOBAROMETRY: QUANTIFYING THE
METAMORPHIC INVERSION

Models of the development of the Himalayan orogenic wedge depend on the conditions of meta-
morphism and distributions of peak metamorphic pressure (P) and temperature (T). Strenuous
efforts—over 100 publications—have been exerted to quantify Ps and Ts. Although one might like
to plot all data for a region together, unfortunately over half of these studies employed improper
petrologic practice or simply did not provide sufficient documentation to permit critical evalua-
tion of results (Kohn & Spear 2000; see sidebar, What Makes a Good Metamorphic Study?). In
addition, different studies used different approaches, as follows:

1. Conventional thermobarometry solves a small number of specific calibrated equilibria,
usually the Grt-Bt or Grt-Hbl Fe-Mg exchange thermometers and the Grt-Pl-Ms-Bt,
Grt-Pl-Hbl-Qtz, or Grt-Pl-Alsi-Qtz barometers. Trace element and spectroscopic ther-
mometers are now increasingly used (e.g., Beyssac et al. 2004, Kohn 2008, Corrie et al.
2010). Advocates argue that we know the thermodynamics of these equilibria best, per-
mitting the most accurate P-T estimates. Critics argue that a single wrong composi-
tion can produce implausible results and that this approach does not evaluate whole-rock
equilibration.

2. Multiequilibrium thermobarometry solves a large number of equilibria within the context of
an internally consistent thermodynamic database, usually Thermocalc’s average P-T algo-
rithm (Powell & Holland 1994). Thermocalc propagates errors in thermochemical proper-
ties including assumed uncertainties in the activities of each mineral component, regardless
of the actual chemical heterogeneity observed in a mineral, which may be substantially better
or worse. Advocates argue that if a rock is well equilibrated, then all equilibria should return
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WHAT MAKES A GOOD METAMORPHIC STUDY?

I consider the following 5 factors:

1. Good geologic practice. Are samples located? Are mineral assemblages reported? Does textural documentation
help interpret reactions and selection of petrologically relevant compositions? Numerous studies do not report
mineral assemblages (see distribution of samples versus mineral zones in Figure 3) or occasionally even sample
locations, and many pro forma textural descriptions do not advance petrologic interpretations.

2. Analytical quality. Are full analyses provided, are anhydrous minerals (garnet, plagioclase, pyroxene) stoichio-
metric to within 1–2%, and are wt% totals within expected ranges? On an anhydrous basis, wt% totals are
typically 94–96% for muscovite, 95–97% for biotite, 96.5–98.5% for amphiboles, 99–101% for feldspars and
pyroxenes, and 99–102.5% for garnet. A few suspect analyses do not indict an entire study but should be rare.
Some computational programs warn against compositions that fail stoichiometric and wt% criteria (e.g., Program
Thermobarometry; Spear et al. 1991).

3. Characterization of compositional zoning. Were X-ray maps of major and minor elements collected for garnet
and other key minerals? Garnet compositions form the foundation of most quantitative interpretations, which
in turn require understanding spatial distributions of chemistry (e.g., see Spear 1993, Kohn 2013). Whereas
detailed line-traverses (typically 100 or more points across individual grains) have been employed since the late
1980s to characterize garnet zoning, X-ray maps first became common in the early to mid-1990s, prior to 80–
90% of publications on Himalayan metamorphism. Compositional zoning in plagioclase can be imaged directly
using backscattered electrons (BSE), but X-ray maps or spot-to-spot analyses may be required to characterize
other minerals or trace element variations. For chemically zoned or heterogeneous minerals, where do reported
compositions fall on X-ray maps or within the spectrum of compositions?

4. Petrologic criteria. What (if any) petrologic criteria were employed in selecting compositions? For example, how
do reported compositions correspond to petrologic models of how chemical zoning forms (e.g., see Tracy et al.
1976, Spear et al. 1990, Spear 1993, Kohn & Spear 2000)? For calculating P-T conditions, were corrections
made for retrograde reactions (Kohn & Spear 2000)?

5. Consistency with phase equilibria. Are reactions, P-T conditions, and P-T paths consistent with mineral stability
fields, especially in metapelites where petrogenetic grids are well established?

Typical good studies use WDS (wavelength dispersive spectrometry, a precise electron beam method) analysis for
major, minor, and more abundant trace elements (e.g., Zr in rutile), or LA-ICP-MS (laser-ablation, inductively
coupled plasma mass spectrometry, a highly precise method for determining trace element concentrations and
U-Th-Pb age) or ion microprobe analysis for trace elements standardized to the same mineral (a rutile standard
for rutile, a titanite standard for titanite, etc.). They also include composition maps and explain how compositions
were chosen for quantitative interpretations based on petrologic criteria, applying compositional corrections as
needed. Less compelling studies do not illustrate zoning or explain where compositions were collected (e.g., simply
reporting “rim” compositions), do not identify any petrologic criteria for selecting compositions, infer results that
contradict phase equilibria, and/or have nonstoichiometric analyses [commonly but not ubiquitously from EDS
(energy dispersive spectrometry, a less precise electron beam method for analyzing major and minor elements)].
These criteria eliminate numerous thermobarometric and P-T path studies from consideration. For example, of
107 thermobarometric studies considered for this review, a majority (61) failed at least one (usually several) of these
criteria and could not be interpreted quantitatively.
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Ky: kyanite

the same P-T condition. Critics argue that many equilibria are sensitive to parameters that
are difficult to constrain, such as H2O activity or mixing properties, leading to erroneous
P-T estimates, and that some well-calibrated equilibria—such as highly temperature sensi-
tive Fe-Mg exchange reactions—are not considered.

3. Pseudosection (bulk-composition-specific phase diagram) analysis delineates mineral as-
semblage stability fields and now commonly also contours fields for mineral compositions.
Advocates argue that, if phase equilibrium constraints are the final arbiter of thermobaro-
metric accuracy (see sidebar, What Makes a Good Metamorphic Study?), then we should
just calculate and use phase equilibrium constraints. Critics argue that these diagrams of-
ten make untestable assumptions about whole-rock reactivity and mineral compositional
homogeneity.

Largely because of the sensitivity of method 2 to H2O activity, some practitioners use a specific
thermometer, usually Grt-Bt Fe-Mg exchange, to constrain T, while using multiple equilibria to
solve for P and H2O activity—essentially a hybridization of methods 1 and 2 (e.g., Stephenson et al.
2000). Others use Thermocalc to determine P and T for specific thermometers and barometers
(Webb et al. 2011)—essentially method 1, except with Thermocalc’s thermodynamics.

To ensure greatest thermobarometric compatibility, I recalculated P-T conditions for ap-
proximately 300 rocks that passed quality control criteria in four areas across the Himalaya
(Figure 1) using an internally consistent set of thermobarometric equilibria (see Supplemen-
tal Material; follow the Supplemental Material link from the Annual Reviews home page at
http://www.annualreviews.org), especially emphasizing P-T distributions across the MCT and
STDS. Key features (Figure 4) include the following:

1. Temperatures. All regions show sharp but continuous increases across the MCT from T ≈
550◦C in the LHS to T = 700–800◦C in the GHS (Figure 4m). Stability of Ky + Bt
occurs at T ≈ 600◦C (Spear & Cheney 1989), which explains why the kyanite isograd
commonly occurs near the MCT: The gradient is consistently steep over a range of Ts that
includes 600◦C. Metapelites and metasammites experience muscovite dehydration melting
at T ≥ 700◦C (e.g., Spear et al. 1999), and calculated Ts above this in the GHS core explain
the common occurrence of migmatites there as well as with occurrences of cordierite and
orthopyroxene expected at T ≥ 750◦C (Spear et al. 1999, Pattison et al. 2003). The steepest
gradients are documented in Bhutan (Figure 4j) and in the densely sampled central Kumaun
to Langtang sector (Figure 4d ), where a consistent T profile is observed along strike for
∼700 km. Raman spectroscopic data for low-grade LHS in Kumaun (Figure 4d ) and THS
at Everest (Figure 4g) show smooth, moderately to very steep decreases in T; Raman data
in Bhutan (Figure 4j) suggest a similar pattern but are too scattered to resolve gradients
independently.

2. Pressures. Most transects show a steep increase in P across the MCT (Figure 4n), again with
the largest and most consistent step in the Kumaun to Langtang sector (Figure 4e). Steeper
than lithostatic (superlithostatic) P gradients above the MCT occur at Kumaun (India),
Langtang (Nepal), and Shemgang (Bhutan; Figure 4e,k), but lithostatic gradients occur in
both northwestern India and the upper reaches of Langtang (Figure 4b,e). Although data
are few, the lack of an anomalous P or T gradient or discontinuity across the GHS-THS
contact in northwestern India suggests that the STDS has substantially less displacement
than, for example, in the Everest region or Bhutan.

3. Combined P-T conditions. Most rocks plot within the kyanite stability field (Figure 4o),
but rocks from Nyalam to Sikkim and the structurally highest rocks at Langtang plot well
within the sillimanite stability field (Figure 4f,i). This result implies an absence of anomalous
heat sources for much of the metamorphic wedge, but reliable thermobarometric data are
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Chl: chlorite

sparser for higher-grade rocks. At structurally high levels of the GHS, high Ts and low Ps
increasingly prevail.

PRESSURE-TEMPERATURE PATHS OF THE
METAMORPHIC SANDWICH

Pressure-temperature (P-T) paths are most commonly determined using one of three thermody-
namically based methods: differential thermodynamics, pseudosection analysis, and petrogenetic
grids (phase diagrams that apply over a range of bulk compositions). A key thermodynamic con-
cept is that mineralogy and mineral compositions in a rock reflect a particular P and T (Duhem’s
theorem). Sufficiently large changes to P and T (�P and �T, respectively) will stabilize different
assemblages, whereas smaller �P and �T within the stability field of a single assemblage drive
changes to mineral abundances and compositions. If �P and �T cause a garnet to grow, and
intracrystalline diffusion is not too fast, then the garnet will encode a series of equilibrium com-
positions from core to rim. The exact form of such zoning depends on �P, �T, and the mineral
assemblage.

In principle P-T paths can be calculated for many rock types, but tectonic applications com-
monly emphasize �P or the P-T path trajectory because this distinguishes better among tectonic
models than does �T alone (e.g., Spear et al. 1984). In the amphibolite facies, P and �P esti-
mates depend principally on Ca partitioning between garnet and compositionally intermediate
plagioclase (typically 0.15 < XAn < 0.60). Although amphibolite-facies P-T paths are sometimes
calculated for plagioclase-absent rocks, these do not normally resolve �P well and should be
avoided for thermodynamic calculations.

Most applications of differential thermodynamics assume a mineral assemblage and invert
chemical zoning in garnet and plagioclase to determine the �P and �T over which the garnet
grew. This approach uses the differential forms of thermodynamic equations to relate changes in
mole fraction (�X) to �P and �T. Its main advantage is that it requires relatively few assump-
tions about mineral equilibration (only mineral rims need equilibrate) or changes to whole-rock
chemistry. However, this method presumes a mineral assemblage and can be severely biased at
higher temperatures by diffusional modification of compositions (Florence & Spear 1991)—for
example, erroneously implying isothermal decreases in pressure. Thus, it is most reliable for LHS
and THS rocks with relatively simple lower amphibolite-facies Grt + Bt + Chl assemblages and
is impracticable in most high-grade GHS garnets whose compositional zoning complexly reflects
multiple reactions plus diffusional modification.

Pseudosection analysis takes specific whole-rock compositions, typically from X-ray fluores-
cence analysis or point counting, and, using mass balance constraints and integrated thermo-
dynamic expressions, calculates the P-T distribution of mineral assemblage stability fields and
mineral compositions within each field. Mass balance constraints reduce thermodynamic variance
to 2 (Duhem’s theorem), so in principle, a single garnet composition with two or more indepen-
dent Xs can be linked with a P-T condition and mineral assemblage in which that garnet formed.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 4
Thermobarometric transects from western through eastern Himalaya quantify temperature and pressure versus structural distance, and
pressure versus temperature arrays. See Figure 1 for locations. (a–c) Northwestern sector. (d–f ) Central sector. ( g–i ) East-central
sector. ( j–l ) Bhutan sector. (m–o) Summary of trends. Gray bars show petrogenic limits on temperature. Geologic abbreviations: GHS,
Greater Himalayan Sequence; LHS, Lesser Himalayan Sequence; MCT, Main Central Thrust; THS, Tethyan Himalayan Sequence.
Mineralogic abbreviations: Ab, albite; Alsi, aluminosilicate; And, andalusite; Kfs, K-feldspar; Ky, kyanite; L, liquid; Ms, muscovite; Qtz,
quartz; Sil, sillimanite.
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Multiple garnet compositions can be used to infer a P-T path. Alternatively, a series of mineral
assemblages as determined from inclusions can be linked to their respective regions in P-T space
to derive a P-T path. This method’s main advantage is that it has a low thermodynamic vari-
ance and requires less compositional correlation. However, it requires more assumptions about
mineral equilibration (commonly, minerals are assumed to be compositionally homogeneous and
completely equilibrated). Thus, arguably, pseudosection analysis may be preferred for high-grade
GHS rocks, where high T ensures a closer approach to whole-rock equilibrium, but avoided at low
T, where complete mineral equilibration is unlikely. At high T, however, diffusional modification
of garnet compositions must be addressed.

Petrogenetic grids effectively map out the occurrences of major reactions in P-T space. Al-
though similar to pseudosections, grids apply over a broader region of composition space, relaxing
assumptions about whole-rock equilibration. Usually a series of mineral textures is used to identify
a sequence of reactions that constrains the P-T evolution. This approach can be applied to mutually
proximal rocks that preserve different reaction textures or to a single rock with multiple textures.

Petrogenetic grids form the basis of several P-T path estimates, but different grids can yield
different interpretations. For example, Swapp & Hollister (1991) and Davidson et al. (1997) used
textures and reaction topologies of H2O-saturated grids to infer nearly isothermal high-T ex-
humation of GHS rocks in Bhutan (Figure 5a). Most importantly, occurrences of cordierite and
spinel were thought to require P ≤ 4 kbar at T ≥ 750◦C (Figure 5a). Such low Ps ultimately led
to the channel flow concept (Grujic et al. 1996), but contrast markedly with thermobarometric
arrays (albeit typically at lower grades; Figure 4). More relevantly, for two reasons, partial melt-
ing reactions and mineral activities <1 strongly affect textural and P-T path interpretations. First,
partial melts are inevitable in these rocks, and reactions to produce cordierite in melt-present grids
are much more temperature sensitive than in melt-absent grids (Spear et al. 1999) (Figure 5a,b).
Second, spinel-forming reactions depend sensitively both on quartz activity [a(Qtz)] and on addi-
tional mineral components, particularly gahnite (Zn-spinel; Waters 1991). Spinel in many GHS
rocks contains Zn and is not associated with quartz [so commonly a(Qtz) < 1, although see Neogi
et al. (1998) and Rubatto et al. (2013) (Figure 2e) for important textural counterexamples]. Both
factors displace the main spinel-forming reaction to higher P (Figure 5b). Thus, although spinel
and cordierite could still have formed at P ≤ 4 kbar, many occurrences could alternatively have

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 5
P-T paths calculated for main belt of LHS-GHS-THS rocks. (a,b) H2O-saturated (melt-absent) grid (Davidson et al. 1997; modified
with permission from Wiley-Blackwell) and melt-present petrogenetic grid (Spear et al. 1999; modified with permission from Springer)
for metapelitic compositions with possible P-T paths ( gray arrows). Light blue shading shows regions of H2O saturation. Other shading
shows regions of staurolite, cordierite, spinel, and orthopyroxene stabilities. Reaction textures for high-grade rocks in Bhutan in the
context of the H2O-saturated petrogenetic grid suggest nearly isothermal high-T exhumation (Swapp & Hollister 1991, Davidson et al.
1997) but could possibly be explained by isobaric heating and cooling in grids that include partial melting (Spear et al. 1999). Bright
white stars show maximum P-T locations of Crd-Spl assemblages; dull white stars show corresponding locations from the alternative
grid. Location of the spinel-forming reaction is sensitive to additional components (Waters 1991) and SiO2 activity.
(c) P-T paths from LHS and THS rocks in northwestern India, central Nepal, and central Bhutan as calculated using differential
thermodynamics (Kohn et al. 2001, 2004; Kohn 2004; Corrie et al. 2012). (d,e) Pseudosections and P-T paths calculated from garnet
compositions in migmatitic rocks from the Everest region of eastern Nepal (Groppo et al. 2012), ignoring melt loss (d ) or reintegrating
melt (e). AE Gran and AE Amph refer to granulite- and amphibolite-facies overprinting P-T conditions for Arun (eastern Nepal)
eclogites from the same structural level (Corrie et al. 2010). Geologic abbreviations: GHS, Greater Himalayan Sequence; LHS, Lesser
Himalayan Sequence; THS, Tethyan Himalayan Sequence. Mineralogic abbreviations: Ab, albite; Alsi, aluminosilicate; And,
andalusite; Bt, biotite; Chl, chlorite; Crd, cordierite; Grt, garnet; Ilm, ilmenite; Kfs, K-feldspar; Ky, kyanite; L, liquid; Ms, muscovite;
Pl, plagioclase; Opx, orthopyroxene; Qtz, quartz; Rt, rutile; Sil, sillimanite; Spl, spinel; St, staurolite. Other abbreviations: KFMASH,
K2O-FeO-MgO-Al2O3-SiO2-H2O; NaKFMASH, Na2O-K2O-FeO-MgO-Al2O3-SiO2-H2O.
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formed at ∼800◦C and ∼7 kbar (Figure 5b), similar to peak P-T conditions inferred elsewhere
in the GHS (Figure 4).

Differential thermodynamics–based P-T paths have been calculated for central Nepal Grt-
grade LHS (Kohn et al. 2001, 2004; Kohn 2004), eastern Nepal LHS and GHS (Imayama et al.
2010), and Bhutan Grt-grade THS (Corrie et al. 2012). The assumed assemblages in Imayama et al.
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(2010), particularly coexistence of rutile and ilmenite, contrast with observed textures, so although
calculated paths compare well with other studies, they are not presented here. Detailed data from
Chambers et al. (2009) permit semiquantitative calculations (see Supplemental Material). All
P-T paths (Figure 5c) occupy a restricted region of P-T space and show small �Ts but various
�Ps, including simple loading (monotonic increases in P and T), loading followed by isobaric
heating, and exhumation with heating. Comparable paths are observed in both the LHS and
THS, although THS paths that explicitly show exhumation with heating are not yet identified.
These paths generally imply that metamorphism accompanied thrust loading (no surprise), but
the relatively small �Ts and restriction to the kyanite stability field generally exclude extraneous
heat sources or protracted heating following thrusting.

Pseudosection-based P-T paths in the Himalaya were first calculated for upper amphibolite-
facies GHS rocks in northwestern India (Vance & Mahar 1998), and numerous published examples
now range over all geographic sectors from the lower amphibolite to granulite facies. Few such
calculations address issues of whole-rock reactivity, however, which can dramatically affect which
mineral assemblages are stable, their location in P-T space, and the compositions of their con-
stituent minerals (e.g., Spear et al. 1990, Gaidies et al. 2008). For example, it has long been known
that Ca zoning in garnet depends on the reactivity of other calcic phases (e.g., Menard & Spear
1993), so that �P cannot be determined reliably from �XCa alone (Spear et al. 1990). This is
one reason why differential thermodynamic P-T path calculations rarely employ mass balance
constraints and instead emphasize garnet and plagioclase compositional correlation. Chemical
zoning in other minerals (e.g., amphibole, pyroxene, mica) and epitaxial or coronitic textures fur-
ther attest to incomplete whole-rock equilibration. For example, Lanari et al. (2013) reported that
mineral reactions in the Stak eclogite do not reflect the whole-rock composition, and they instead
recommend use of local compositional subdomains for pseudosection interpretation.

In contrast to most pseudosection-based studies, Groppo et al. (2010, 2012, 2013) directly ad-
dressed issues of whole-rock compositional change due to melt loss in their analysis of migmatites
in the Everest region of eastern Nepal (see also Guilmette et al. 2011 for Namche Barwa syntaxis
core rocks). These rocks are amenable to pseudosection modeling because high T promotes
whole-rock equilibration. Models (Figure 5d,e) show that although melt loss does not significantly
shift the P-T locations of cordierite- and orthopyroxene-bearing assemblages, it profoundly
affects calculated melt production and the location of muscovite- and biotite-bearing assemblages.
Basically, reintegrating melt components predicts topologies more similar to petrogenetic grids.
For example, both predict major melt production across the muscovite dehydration-melting
reaction, which textures and geochemistry indicate was a key leucogranite-producing reaction in
the Himalaya (Inger & Harris 1992, Harris & Massey 1994). The pseudosection-based P-T paths
as determined from garnet chemistry (Groppo et al. 2012) (Figure 5d,e) show nearly isothermal
exhumation, qualitatively similar to the path inferred in Bhutan (Swapp & Hollister 1991,
Davidson et al. 1997) but displaced to higher P. The path determined by Groppo et al. fits
neatly into bounding P-T conditions determined thermobarometrically from granulite- and
amphibolite-facies overprinting assemblages of eclogites from a similar structural position (Corrie
et al. 2010) (Figure 5e).

ECLOGITES AND ECLOGITES

Two general occurrences of eclogites are found in the Himalaya: (a) ∼50 Ma UHP and near-UHP
eclogites in Pakistan (Kaghan and Stak) and northwestern India (Tso Morari), and (b) ∼25 Ma
HP eclogites distributed from eastern Nepal and southern Tibet through western Bhutan. These
two groups are distinguished on the basis of metamorphic P-T conditions, ages, and (inferred)
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Cpx: clinopyroxene

mechanisms of formation and exhumation (e.g., see Lombardo & Rolfo 2000, Guillot et al. 2008).
With some notable exceptions (e.g., Lanari et al. 2013, St-Onge et al. 2013), P-T paths for these
rocks are typically determined by calculating specific P-T conditions for peak eclogite versus
overprinting assemblages and connecting these points through P-T space. The highest-P eclogites
for a region are emphasized here.

In the northwestern Himalaya, eclogites were first discovered ca. 1950 (Berthelsen 1953), then
rediscovered ca. 1990 (e.g., Pognante & Spencer 1991, Pognante et al. 1993, Guillot et al. 1995).
Within a decade, UHP conditions (presence of coesite) were documented for Kaghan and Tso
Morari (Mukherjee & Sachan 2001, O’Brien et al. 2001, Kaneko et al. 2003) (Figure 2f ). The
eclogites occur as boudinaged, metamorphosed, mafic dikes in thrust slices assigned to the GHS
and THS along the leading edge of the Indian subcontinent (e.g., see Kaneko et al. 2003, Treloar
et al. 2003, de Sigoyer et al. 2004, Guillot et al. 2008, Lanari et al. 2013).

Peak P-T conditions are principally based on Grt chemistry and thermobarometry of Grt +
Cpx + phengite assemblages, and are consistent with the presence of coesite in the Kaghan and
Tso Morari eclogites (Kaneko et al. 2003, Rehman et al. 2007, Wilke et al. 2010a, St-Onge et al.
2013), and with an absence of coesite in the Stak eclogites (Lanari et al. 2013) (Figure 6a). All
eclogites record exhumation by 15–20 kbar. P-T conditions of surrounding felsic gneisses and
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Figure 6
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Opx: orthopyroxene

Ttn: titanite

comparisons among different eclogites suggest heating of some Tso Morari and Kaghan eclogites
during exhumation (Rehman et al. 2007, St-Onge et al. 2013), whereas a blueschist overprint
suggests initial cooling of a Kaghan eclogite (Wilke et al. 2010a; see also Lombardo et al. 2000
for inferred quasi-isothermal exhumation) (Figure 6a). Kaghan and Tso Morari eclogites record
subsequent heating at moderate pressure; e.g., hornblende overprints glaucophane in the Kaghan
eclogite and Hbl-Pl Ts are ∼675◦C (Wilke et al. 2010a) (Figure 6a). Lower-P paths exhibiting
nearly isothermal exhumation with a moderate-P thermal overprint have been inferred from Tso
Morari (de Sigoyer et al. 1997, Guillot et al. 1997).

Focusing on ages that can be linked definitively to metamorphic conditions, the Kaghan eclog-
ites are best studied, with a Grt-Cpx Sm-Nd age of 49 ± 12 Ma, U-Pb ages on zircon domains
with quartz versus coesite inclusions of ∼50 versus 46.2 ± 0.7 Ma, 40Ar/39Ar ages for phengite
and hornblende of ∼47 Ma, cooling ages for rutile (U-Pb) and phengite (Rb-Sr) of 39–44 Ma, and
apatite fission track and U-Th/He ages as old as 20–25 Ma (Tonarini et al. 1993; Kaneko et al.
2003; Treloar et al. 2003; Wilke et al. 2010b, 2012). Most notably, the age of eclogitization (46–
47 Ma; U-Pb on zircon with coesite inclusions and 40Ar/39Ar on phengite) closely follows initial
collision (50–55 Ma; Najman et al. 2010), with a rapid transition to posteclogite facies overprinting
and cooling (44–47 Ma; 40Ar/39Ar on hornblende, U-Pb on rutile, and Rb-Sr on phengite). The
latter data imply exhumation rates up to 100 km/Myr (Wilke et al. 2010b). Data from Tso Morari
include Lu-Hf and Sm-Nd ages on eclogitic garnets of 55 ± 12 and 55 ± 7 Ma, U-Pb ages on
zircon inclusions in a garnet core of 58 ± 2 Ma and in garnet rims of 46 ± 3 Ma, 40Ar/39Ar and
Rb-Sr ages on phengite of 48–54 and 46 ± 4 Ma, and zircon fission track ages of 34–45 Ma (de
Sigoyer et al. 2000, Schlup et al. 2003, Donaldson et al. 2013, St-Onge et al. 2013), also suggesting
rapid transitions from the initiation of collision to peak eclogitization and thence to exhumation
and cooling in the mid- to upper crust.

Eclogites with a strong granulite- to amphibolite-facies overprint were first discovered in
southern Tibet near Everest in the late 1990s (Lombardo & Rolfo 2000) and occur as meta-
morphosed boudinaged mafic dikes. Virtually identical rocks are described in eastern Nepal and
northwestern Bhutan (e.g., Corrie et al. 2010, Grujic et al. 2011) (Figure 1). The following dis-
cussion of the Nepal/Tibet eclogites is based on Lombardo & Rolfo (2000), Groppo et al. (2007),
Cottle et al. (2009), and Corrie et al. (2010). Garnet composition maps and inclusion textures indi-
cate that granulite-facies rims overgrew eclogite-facies cores. Matrix orthopyroxene and Opx + Pl
symplectites attest to late-stage granulite-facies conditions, whereas matrix hornblende replaces
pyroxenes and indicates a latest-stage amphibolite-facies overprint. Omphacite sensu stricto is
not preserved (maximum jadeite contents of inclusions in garnet are ∼15%). Rather, diopsidic
matrix pyroxene is either surrounded by or intergrown with plagioclase that is interpreted to
have exsolved from HP omphacite with jadeite contents up to 30–40%. Reintegrated omphacite
compositions, Zr-in-Ttn thermometry, and various overprinting assemblages constrain P-T
paths, which record peak conditions at higher T and lower P than for the northwestern Himalayan
eclogites (Figure 6b); i.e., these paths indicate greater heating in the middle crust.

Eclogitization has not been dated directly, but a Lu-Hf garnet age of 20.7 ± 0.4 Ma represents
a mixture of eclogite-facies core and granulite-facies rim, so eclogites must be older than ∼21 Ma
(Corrie et al. 2010). Accessory mineral ages of 13–14 Ma date granulite-facies conditions and
subsequent cooling (Cottle et al. 2009, Corrie et al. 2010). Proportioning the Lu-Hf garnet age
between eclogite and granulite components on the basis of measured core versus rim Lu contents,
and assuming a youngest possible granulite-facies age of 13–14 Ma, implies a maximum age of
eclogitization of 23–26 Ma (Corrie et al. 2010)—quite clearly younger than UHP eclogites in
the northwestern Himalaya, which had already cooled through fission track closure by ∼25 Ma
(Schlup et al. 2003, Wilke et al. 2012).
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Kfs: K-feldspar

Sil: sillimanite

SYNTAXES

Like the UHP eclogites, the syntaxes represent geographically restricted occurrences of unusually
high-grade metamorphic rocks. The Nanga Parbat–Haramosh massif occupies the core of the
Nanga Parbat syntaxis in the northwest Himalaya and exposes relatively high-P rocks along its
eastern edge, including granulites, Ky + Kfs gneisses, and the Stak eclogite discussed above (e.g.,
Misch 1949, Pognante et al. 1993, Le Fort et al. 1997). Unusually young (≤3 Ma) leucogranites
and low-P Crd + Kfs + Sil ± Spl LHS gneisses in the core of the massif have inspired numerous
studies (see summaries in Zeitler et al. 1993, 2001a). Unfortunately from the perspective of quan-
titative petrology, only a handful of garnet zoning profiles and mineral compositions have been
published for massif core rocks, petrologic criteria were not applied in compositional selection
(nearly all are described as rim analyses), and most P-T conditions are inconsistent with petroge-
netic grids. Sparse data for central gneiss garnets (Winslow et al. 1995) demonstrate significant
diffusional reequilibration of garnet compositions and qualitatively explain discrepancies between
thermobarometry and petrogenetic grids, but also render nearly all thermobarometric and P-T
path calculations suspect. Detailed investigations of high-grade central gneisses at Nanga Parbat
by Whittington et al. (2000) provide the best-constrained P-T estimate. Key assemblages and
textures include the formation of cordierite and spinel after Bt + Sil, and together with measured
spinel compositions restrict P-T conditions to T ≥ 700◦C at 5 kbar (Figure 7). Textures and com-
positions do not directly constrain the P-T history, but structural setting favors nearly isothermal
exhumation, crossing the muscovite-dehydration-melting curve to produce leucogranites (e.g.,
Zeitler & Chamberlain 1991, Whittington 1996, Butler et al. 1997, Zeitler et al. 2001a, Koons
et al. 2002).

Rocks commonly assigned to the GHS in the core of the Namche Barwa massif display unusually
high metamorphic grade (granulites and Crd + Spl–bearing assemblages) and young ages from
leucogranites and leucosomes (≤4 Ma; Liu & Zhong 1997, Burg et al. 1998, Ding et al. 2001,
Booth et al. 2004). Peak P-T conditions are difficult to constrain because observed assemblages
are stable over a wide region of P-T space, and extensive low-P, high-T overprinting complicates
thermobarometry. Nonetheless, T ≥ 800◦C at a maximum P of 11–15 kbar is consistent with
most data (Liu & Zhong 1997, Ding & Zhong 1999, Booth et al. 2009, Guilmette et al. 2011)
(Figure 7). Thermobarometry of overprinting cordierite assemblages and detailed pseudosection
analysis of melanosomes indicate nearly isothermal exhumation at T ≈ 800◦C (Liu & Zhong
1997, Ding & Zhong 1999, Guilmette et al. 2011), although some heating during exhumation is
possible (Guilmette et al. 2011). Guilmette et al. (2011) inferred melt crystallization in restites at
T ≈ 800◦C and P ≈ 10 kbar, which agrees broadly with isopleths of Ti content of quartz rims
that are interpreted to have crystallized from in situ melts (Figure 7).

Geochronology of central gneisses at Namche Barwa (Burg et al. 1998; Ding & Zhong 1999;
Ding et al. 2001; Booth et al. 2004; Xu et al. 2010, 2012; Liu et al. 2011; Su et al. 2012) yields
conflicting interpretations. Ages assigned to high-T processes (3–40 Ma) bracket ages assigned
to initial cooling (11–18 Ma). Constraints on the former include U-Pb zircon ages of deformed
leucogranites and leucosomes (3–14 Ma; Booth et al. 2004), bulk monazite separates (4–19 Ma;
Liu et al. 2011), a garnet Sm-Nd age (16.0 ± 2.5 Ma; Burg et al. 1998), and U-Pb ages of zir-
con linked chemically or texturally to high temperature (11–24, 40 Ma; Ding et al. 2001, Xu
et al. 2010). Initial cooling ages include hornblende 40Ar/39Ar (8–17 Ma; Ding & Zhong 1999,
Ding et al. 2001), amphibolite-facies zircons (17–18 Ma; Xu et al. 2010, Su et al. 2012), and
monazite with rims that crystallized from in situ partial melts (11, 19 Ma; Liu et al. 2011).
One admittedly nonunique scenario is that high-P granulite-facies metamorphism persisted until
17 Ma (zircon, garnet ages), succeeded by exhumation, melt crystallization at ∼11 Ma (zircon,
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Figure 7
P-T constraints for core massifs of the Nanga Parbat and Namche Barwa syntaxes. Boxes and ellipses
represent specific P-T constraints (orange ellipse, Whittington et al. 2000; purple fields, Liu & Zhong 1997 and
Ding & Zhong 1999; green box, recalculated data from Booth et al. 2009; blue polygons, Guilmette et al. 2011).
Restite solidi are from Guilmette et al. (2011). Stability fields for cordierite and orthopyroxene are from
Spear et al. (1999; see also Figure 5). Some published P-T fields are not included for petrologic reasons
(e.g., see discussion in Burg et al. 1998, Guilmette et al. 2011). Abbreviations: Ab, albite; Alsi,
aluminosilicate; And, andalusite; Crd, cordierite; Jd, jadeite; Kfs, K-feldspar; L, liquid; Ms, muscovite;
Opx, orthopyroxene; Qtz, quartz; Sil, sillimanite.

monazite), and cooling through the amphibolite facies at ∼8 Ma (40Ar/39Ar ages), but with spo-
radic intrusion of leucogranites, local reheating, and mineralization as recently as 3 Ma (youngest
leucogranites).

ACCESSORY MINERAL THERMOMETRY AND GEOCHRONOLOGY:
THE PACE OF CHANGE

Advances in four key areas of accessory mineral geochemistry and geochronology are revolu-
tionizing petrologic methods and beginning to shape our understanding of Himalayan tectonics:
(a) experimental calibration of the strong temperature dependence of Zr contents in rutile and
titanite and Ti contents in zircon and quartz (e.g., see Watson et al. 2006, Hayden et al. 2008,
Thomas et al. 2010); (b) petrologic and geochemical models of abundances (dissolution versus
growth) and chemical variations in monazite and zircon (Rubatto 2002, Kelsey et al. 2008, Spear
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Mnz: monazite

& Pyle 2010, Kelsey & Powell 2011); (c) rapid and precise microanalysis, particularly by LA-ICP-
MS (laser-ablation, inductively coupled plasma mass spectrometry); and (d ) X-ray mapping or
other imaging of genetically distinct chemical domains. Combining geochemistry, petrology, and
geochronology now constrains Ts much more precisely and, in favorable cases, links accessory
mineral ages with the P-T conditions of formation. Three examples illustrate the potential of
these methods but also raise new petrologic and tectonic questions.

Monazite

In most rocks, a single trace element cannot as yet link monazite chemistry directly to T. Rather,
Y and Th zoning patterns, as identified using X-ray mapping, are combined with petrogenetic
considerations and other trace element patterns to allow inference of the reactions responsible for
producing earlier- versus later-formed Mnz (see Pyle & Spear 1999, 2003; Zhu & O’Nions 1999;
Kohn et al. 2005). For example, prograde growth of garnet and monazite sequesters Y and Th, so
that later-formed grains or domains have lower Y and Th contents. Thus, in lower-grade GHS and
LHS, latest-formed domains or grains can be identified chemically and dated microanalytically to
estimate the peak metamorphic age. Monazite dissolves during melting (Kelsey et al. 2008, Spear
& Pyle 2010) and regrows with a high Y and Th content when the melt cools and crystallizes
(Pyle & Spear 2003). Thus, in migmatitic GHS, monazite typically exhibits high-Y and high-
Th rims (melt crystallization) that overgrow preanatectic low-Y cores (Kohn et al. 2004, 2005)
(Figure 8a). Geochronology of monazite domains in migmatites principally dates the timing
of melt crystallization (monazite rim ages) and brackets the timing of peak metamorphism and
melting (monazite rim versus core ages).

Data from central Nepal (Kohn et al. 2004, Corrie & Kohn 2011) illustrate two major features
(Figure 8a; see also Montomoli et al. 2013 for analogous data from western Nepal). First, the age
of each generation of monazite decreases structurally downward—e.g., along the Modi transect,
late prograde ages decrease from ca. 35 to <25 Ma, whereas at Langtang peak, metamorphic ages
decrease from ca. 20 and 16 Ma in the middle and lower GHS to 11 and 3 Ma in the upper and
lower LHS, respectively (Figure 8a). Second, cooling at higher structural levels coincides with
heating at lower structural levels—at Langtang, rocks of the lower GHS were still heating while
melts in the middle GHS were crystallizing, rocks of the upper LHS were still heating while melts
in the lower GHS were crystallizing, etc. These patterns are expected for in-sequence thrusting
because thrust emplacement cools the hanging wall while heating the footwall. Thus, in central
Nepal, the upper GHS was transported soon after 25 Ma, the MCT was active between ca. 15 and
20 Ma, and LHS thrusts were active later. Note that older ages approaching 40 Ma say little about
metamorphic conditions because monazite can form at temperatures ranging from diagenesis (e.g.,
Evans & Zalasiewicz 1996) to melt crystallization.

Titanite

Few studies as yet analyze titanite, but combination of in situ Zr-in-Ttn thermometry with U-Pb
geochronology in central Nepal constrains T-t histories for high-grade GHS (Kohn & Corrie
2011) (Figure 8b). Titanite crystals from calc-silicates along the Modi transect (Figures 1 and
3b) were analyzed using LA-ICP-MS for Zr content and U-Pb ages, both in thin section with
simple spot analyses and as mineral separates via depth profiling. These data appear unaffected by
diffusional reequilibration of either Zr or Pb and indicate T ≥ 700–750◦C since ∼35 Ma, peaking
at T ≈ 775◦C at ∼20 Ma (Figure 8b). This latter result compares well with monazite rim ages
from the same region that indicate melt crystallization at ∼19 Ma (Figure 8a). However, monazite

www.annualreviews.org • Himalayan Metamorphism 399

A
nn

u.
 R

ev
. E

ar
th

 P
la

ne
t. 

Sc
i. 

20
14

.4
2:

38
1-

41
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
R

ic
e 

U
ni

ve
rs

ity
 o

n 
04

/1
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



EA42CH17-Kohn ARI 9 May 2014 15:24

Zrc: zircon

core ages of 25–35 Ma are interpreted to reflect subsolidus conditions, whereas Zr-in-Ttn Ts are
above expected pelite solidi (Spear et al. 1999). Either (a) unrecognized bias affects Zr-in-Ttn
Ts or ages, (b) monazite petrogenesis of core compositions is misinterpreted (e.g., low-Y cores
reflect dissolution-reprecipitation in the presence of melt, not prograde subsolidus growth), or
(c) the solidi of metapelites are higher than predicted thermodynamically. Regarding the latter,
some experiments (Patiño Douce & Harris 1998) suggest solidus Ts 25–50◦C higher than the
solidus predicted by petrogenetic grids and pseudosections (e.g., Spear et al. 1999, Guilmette et al.
2011, Groppo et al. 2012). Thermobarometric and Zrc-saturation Ts, however, are consistently
lower than in the Patiño Douce & Harris experiments (Figures 4 and 8c).
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Rt: rutile

Zircon

Novel combination of Ti-in-Zrc thermometry and U-Pb geochronology is most comprehen-
sive for leucogranites and migmatites from high-grade GHS of Sikkim (Kellett et al. 2013,
Rubatto et al. 2013). Muscovite dehydration melting is thought to have produced partial melts
in migmatites and discrete leucogranite bodies (Inger & Harris 1992, Harris & Massey 1994),
in principle allowing intercomparison of these two data sets. Ti-in-Zrc Ts depend on the activ-
ity of rutile [a(Rt)], and Ts were recalculated from reported Zr concentrations assuming average
metapelite a(Rt) = 0.8 ± 0.2 (Chambers & Kohn 2012); in fact, a(Rt) was likely higher (calcu-
lated Ts are maxima) because rutile is reported in some rocks, and biotite compositions (Neogi
et al. 1998, Dasgupta et al. 2004, Harris et al. 2004, Rubatto et al. 2013) imply a(Rt) > 0.95 at
estimated peak Ts of 750–825◦C. Decreasing a(Rt) to 0.5 increases Ti-in-Zrc Ts by ∼50◦C. The
Zr content of melts in equilibrium with zircon is also temperature sensitive (Watson & Harrison
1983), and the latest experimental calibration (Boehnke et al. 2013) was used to estimate typical
leucogranite melt Ts for tabulated compositions from the central Himalaya (see references in the
Supplemental Material). Use of the Watson & Harrison (1983) calibration raises Zrc-saturation
Ts by ∼50◦C. Ti-in-Zrc Ts broadly range between wet and dry solidi and overlap Zrc-saturation
Ts (Figure 8c). Migmatites may suggest gradually increasing T to ∼16 Ma, although chemistry of
monazite and zircon suggests peak Ts at 23–28 Ma (depending on structural level) and a transition
to initial cooling at 20–25 Ma (Kellett et al. 2013, Rubatto et al. 2013) (Figure 8c).

In the context of published T-t paths (Figure 8c), zircon Ts are perplexing. First, no zircon
should record a T below the T-t path, yet they consistently do. How can a 650◦C zircon crystallize
in an 800◦C rock? Second, if regional Ts were low when the first zircon crystallized in leucosomes
or leucogranites, but Ts increased through time, then the leucosomes and leucogranites should
remelt, dissolving older zircons. So, why are older zircons preserved? More generally, many studies
for the area invoke heating followed by high-T exhumation to catalyze melting between 25 and
15 Ma (e.g., Ganguly et al. 2000, Harris et al. 2004, Groppo et al. 2012, Kellett et al. 2013, Rubatto
et al. 2013), yet progressive melting should cause zircon to dissolve, not crystallize (Kelsey et al.
2008, Kelsey & Powell 2011). Several possible explanations can be considered but are as yet
unsatisfying: (a) Calculated Ti-in-Zrc Ts are too low. Experimental and natural data are mutually
consistent (Watson et al. 2006), however, and a(Rt) would have to be unreasonably low (∼0.25) to
raise calculated Ts to ∼800◦C. (b) Estimated regional metamorphic Ts are too high. Petrogenetic

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 8
Geochronologic constraints from the central Himalaya that directly link to T histories. (a) Monazite chemistry can be linked to
progressively higher grades (decreasing Y and Th) and crystallization of in situ melts (high-Y, high-Th rims). Ages from central Nepal
show systematically decreasing ages structurally downward for each monazite generation, consistent with in-sequence thrusting (Kohn
et al. 2004, Corrie & Kohn 2011; modified with permission from Elsevier). Inset shows an X-ray map of yttrium (Y) that illustrates pre-
versus postanatectic monazite generations in a single grain. (b) Titanite Ts (from Zr-in-Ttn thermometry) and U-Pb ages indicate
increasing Ts from 35–40 Ma to ∼20 Ma (Kohn & Corrie 2011; modified with permission from Elsevier). Insets show backscattered
electron image of titanite, illustrating complex zoning and multiple generations of titanite, and analytical protocol (either spot analysis
in polished thin sections or depth profiling of separated grains). “Melt crystal” refers to regional ages for melt crystallization as
determined from monazite. (c) Zircon T-t data from in situ Ti-in-Zrc and U-Pb (Kellett et al. 2013, Rubatto et al. 2013), shaded
according to structural level. Data suggest T ≤ ∼700◦C since 35 Ma, and possibly increasing Ts to ∼15 Ma. Ti-in-Zrc and typical
Himalayan Zrc-saturation Ts (histogram on left; see Supplemental Material for references) fall well below estimated peak
metamorphic Ts. A shift in monazite chemistry at 20–25 Ma may indicate a transition to regional cooling. The gray curve reproduces
the Modi titanite-derived T-t history. Other T-t curves are from Ganguly et al. (2000; G00, assuming peak age of 23 Ma), Harris et al.
(2004; H04), Rubatto et al. (2013; R13), and Kellett et al. (2013), and are shaded according to structural level. Geologic abbreviations:
GHS, Greater Himalayan Sequence; LHS, Lesser Himalayan Sequence. Mineralogic abbreviations: Mnz, monazite; Ms, muscovite;
Ttn, titanite; Zrc, zircon.
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grids and pseudosections consistently require T ≈ 800◦C to explain occurrences of cordierite and
spinel in metapelites (Spear et al. 1999, Ganguly et al. 2000, Groppo et al. 2012, Rubatto et al.
2013) and orthopyroxene in metabasites (Neogi et al. 1998, Pattison et al. 2003). Otherwise, if
petrologic Ts are not regional, then every occurrence of high-grade assemblages would have to
reflect an anomaly near an intrusion. (c) The ages are incorrect. The systematic correlation of
zircon chemistry and ages (see Rubatto et al. 2013) and general reliability of zircon U-Pb ages
make this unlikely. (d ) The age of peak metamorphism and low-P assemblages predates granite and
migmatite crystallization. This would generally require peak metamorphism at ≥35 Ma, which is
inconsistent with mineral chemical trends (Rubatto et al. 2013) and regional chronologic patterns
(e.g., Godin et al. 2006).

TECTONIC MODELS

Tectonic models of Himalayan metamorphism have mainly focused on four questions: How did an
inverted metamorphic field gradient form across the MCT? To what degree does flow of middle
to lower crust (channel flow) impact metamorphic evolution? What mechanism drove extension?
How and why were eclogites and granulites exhumed? Answers to these questions can generally be
divided into either continuum processes or singular events. Thermal models (e.g., channel flow,
critical wedge) typically represent continuum responses to specific boundary conditions. Singular
events include specific shear zone movements, wedge collapse, slab breakoff, and structural or
erosional focusing at the syntaxes.

Several models emphasize links among climate, erosion, tectonics, and metamorphism (e.g.,
see Willett 1999, Beaumont et al. 2001, Koons et al. 2002). Regionally, modern precipitation in
the Himalaya varies from a high of 2,000–4,000 mm/yr in the frontal portion of the range to as
little as 100 mm/yr toward the hinterland (e.g., Bookhagen & Burbank 2006). Modern erosion
rates at the range front can exceed 5 mm/yr (Lavé & Avouac 2001), although longer-term rates
are generally lower and do not obviously correlate with rainfall (Burbank et al. 2003, Thiede et al.
2009). Local erosion rates ≥5 mm/yr occur along specific rivers such as the Indus (Nanga Parbat
syntaxis; Zeitler et al. 2001b) and Yarlung Tsangpo (Namche Barwa syntaxis; Burg et al. 1998),
especially where they cross the range.

Origin of Inverted Metamorphism

Originally Le Fort (1975) proposed that rapid emplacement of the GHS along the MCT and
downward heat conduction into the LHS produced the metamorphic inversion. Viability of this
singular event model also requires significant shear heating and rapid exposure to prevent thermal
equilibration of the footwall (England & Molnar 1993b). Others proposed postmetamorphic

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 9
Models of orogenic wedges and the development of the inverted metamorphic gradient. (a) Conceptual model of extrusion (Grujic
et al. 1996; modified with permission from Elsevier) overturns isograds (dashed and dotted lines) along the lower thrust boundary.
(b) Channel flow thermal model (modified from Jamieson et al. 2004). Focused erosion at the orogenic front (large gray arrow) couples
with hot, partially molten GHS. Stippling shows the region fertile to melting. Shear zones are not proscribed, so MHT and STDS
locations are based on strain gradients. The length of long versus short white arrows below and above the MHT is proportional to the
magnitude of shear along the MHT versus channel flow. (c) Relatively cold critical wedge model (modified from Henry et al. 1997,
Cattin & Avouac 2000, Kohn 2008) with distributed erosion (small gray arrows). Black squares show the P-T positions of different thrust
sheets at Langtang. Geologic abbreviations: GHS, Greater Himalayan Sequence; LHS, Lesser Himalayan Sequence; MHT, Main
Himalayan Thrust; STDS, South Tibetan Detachment System; THS, Tethyan Himalayan Sequence. Mineralogic abbreviations:
Ab, albite; Alsi, aluminosilicate; And, andalusite; Kfs, K-feldspar; Ky, kyanite; L, liquid; Ms, muscovite; Qtz, quartz; Sil, sillimanite.
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folding of isograds (e.g., Searle & Rex 1989, Hubbard 1996) and postmetamorphic shearing, in
the context of either thrust-sense shearing at multiple levels ( Jain & Manickavasagam 1993) or
extrusion bounded by thrust- and normal-sense shears (Grujic et al. 1996, Vannay & Grasemann
2001) (Figure 9a). Fold nappes at scales of several kilometers do occur in northwestern India
(Searle & Rex 1989), but they do not postdate peak metamorphism there (Wyss 2000, Walker
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et al. 2001), and such folds are not generally evident elsewhere. More relevantly, many of these
models implicitly presume a normal geotherm (i.e., Ts increase downward uniformly) with flat
isotherms and isograds (Figure 9a), so that juxtaposition of higher-grade on lower-grade rocks
reflects an anomalous perturbation to an otherwise monotonous thermal structure. Each model
ignores one of two basic facts. First, just because a thrust slice reached high temperatures does
not mean it was emplaced hot—it might have cooled during or prior to emplacement so that
isotherms during emplacement were not significantly perturbed from steady state. Second, just
as in subduction zones, most models of protracted continental underthrusting produce sigmoidal,
not flat, steady-state isotherms (Royden 1993, Henry et al. 1997) (Figure 9b,c). That is, at scales
of tens of kilometers, isotherms of the middle to lower crust are inherently folded even if the rocks
are not. In principle, lateral transport alone through such a thermal structure could produce an
inverted metamorphic gradient or metamorphic sandwich (Kohn 2008) without requiring folding
or differential extrusion of the Himalayan core.

Ultimately, chronologic microanalysis of monazite solved the inverted metamorphism prob-
lem, at least in central Nepal, in favor of simple lateral transport via a continuum of in-sequence
thrusts. First, Grt-grade (∼550◦C) LHS rocks immediately beneath the MCT in central Nepal
exhibit considerably younger prograde to peak metamorphic ages (6–8 Ma) than those of the
overlying GHS (≥20 Ma; Harrison et al. 1997, Catlos et al. 2001). Notably, the LHS ages are
younger than GHS muscovite 40Ar/39Ar ages (10–20 Ma depending on structural level; e.g., see
Herman et al. 2010), which presumably record cooling through ∼425◦C (Harrison et al. 2009).
So the GHS was undoubtedly cooler than the LHS when the LHS was metamorphosed, and the
geotherm in the middle to upper crust was not inverted at that time or location. Second, Kohn
et al. (2004) documented simultaneous cooling of hanging wall rocks during heating of footwall
rocks across three major in-sequence thrusts in the Langtang region (Figure 8a; see also Carosi
et al. 2010, Corrie & Kohn 2011, Montomoli et al. 2013). These results imply greater dynamism
between structure and metamorphism but are nonetheless expected for steady-state models of
protracted thrusting. Singular structural and thermal perturbations could have occurred, such as
postmetamorphic folding or shearing, but general metamorphic and chronologic observations do
not require them.

Protracted in-sequence thrusting helps explain several major structural and metamorphic fea-
tures (Kohn 2008). For example, reconstruction of sample paleopositions in the context of steady-
state thermal models suggests that each major in-sequence thrust, when active, was simply the
shallowly inclined MHT (Figure 9c). As the MHT stepped downward in response to changes
in wedge thickness or geometry, its former abandoned trace was passively carried forward and
eventually exhumed. We now label these former traces as separate thrusts because they juxtapose
different rock types, but when active they were simply the MHT (obviously this does not apply
to out-of-sequence thrusts). In-sequence thrusting further implies that metamorphic gradients
broadly reflect the scale and duration of thrusting. Long transport on a single shear zone juxta-
poses rocks of considerably different metamorphic grade to produce steep metamorphic gradients.
In contrast, short transport juxtaposes rocks of similar metamorphic grade, and accumulation of
numerous such thrusts in a duplex produces shallow metamorphic gradients. Presumably this is
why the MCT and LHD exhibit such different P and T gradients (Figure 4): They respectively re-
flect long transport on a single thrust (steep gradient on the MCT) and accumulation of numerous
short-transport thrusts (shallow gradient on the LHD).

Orogenic Channels: Flow or No Flow?

Numerous thermal-mechanical simulations have resolved into a dichotomy of orogenic wedge
models—normally termed channel flow and critical taper—to explain the distribution of
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LHS-GHS-THS metamorphic rocks (Figure 9b,c). In channel flow (Beaumont et al. 2001,
Jamieson et al. 2004) (Figure 9b), weak, partially molten material in the mid- to deep crust (nomi-
nally the GHS) couples with and flows toward a focused erosional front, differentially transporting
heat and mass relative to stiffer rocks above and below (nominally the THS and LHS). Basically,
if erosion differentially removes material at the range front, the channel flows forward to replace
that material, with greater flow at the base of the channel where rocks are weakest. In critical taper
models (e.g., Dahlen 1990) (Figure 9c), erosion is distributed and the wedge maintains a regular,
material-specific geometry without requiring lower crustal flow, typically deforming through in-
sequence thrusting. Focused erosion, if it occurs, is balanced proximally through the development
of a thrust duplex (Dahlen 1990, Herman et al. 2010), and extension reflects a singular adjust-
ment to wedge mechanical properties such as rheology or basal shear stress. Whereas the channel
flow model of metamorphic and chronologic evolution can ultimately be traced to a particular
thermal-mechanical simulation (Beaumont et al. 2001), models referred to as critical taper include
mechanical-only models (Dahlen 1990), steady-state thermal models (Henry et al. 1997), and ther-
mal models with evolving kinematics (Herman et al. 2010). These latter models differ in approach
but, like critical taper sensu stricto, exhibit consistent wedge geometries and boundary conditions.

Few question whether GHS rocks weakened thermally and through in situ partial melting.
Whether a sufficient thickness of crust was simultaneously weak and actually did flow, however,
has sourced intense debate for over a decade. Reserving quantitative P-T-t considerations for
later discussion, arguments in favor of channel flow include the following: (a) Focused erosion
at the range front can catalyze flow, and this erosional pattern is observed today. (b) Flow of a
channel explains the STDS. All orogenic models include thrusting along the base of the wedge,
but channel flow additionally implies long-term (tens of millions of years) normal-sense shear
along the channel top. (c) Channel flow produces a metamorphic sandwich. Differential extrusion
of a high-T central channel amplifies metamorphic gradients both above and below.

Arguments in favor of critical taper include the following: (a) Focused erosion can catalyze
duplex formation (Dahlen 1990, Herman et al. 2010), and a duplex is observed (the LHD).
(b) The duration of movement on the STDS in some areas may have been only a few million
years (Sachan et al. 2010, Carosi et al. 2013), which points to short-lived adjustment to wedge ge-
ometry. The STDS may not even have formed in northwestern India, despite broad metamorphic
and structural similarities to other regions along strike. (c) Most continuum models, including crit-
ical taper, form a metamorphic sandwich (e.g., Royden 1993, Henry et al. 1997, Cattin & Avouac
2000, Herman et al. 2010). (d ) Juxtaposition of rocks with differing metamorphic grades should
occur at depth along the décollement (MHT), not a thrust ramp. Structural studies consistently
demonstrate emplacement of the main thrust sheets with a flat-on-flat, not inclined, geometry
(Robinson & Pearson 2006) (Figure 1c–e).

Of relevance to this review, these two end-member models make distinctly different P-T-t
predictions (Kohn 2008) (Figure 10). Channel flow’s high heat production and profound
lateral heat transport increase Ts of over- and underlying rocks by ∼150◦C nearly isobarically
(Figure 10a). Most heat transport in these models actually occurs via thrust displacement, rather
than flow sensu stricto: Model particle paths suggest ∼80 km of transport from flow ( Jamieson
et al. 2004) (Figure 9b), versus minimum thrust displacements of 500–900 km (see summary in
Long et al. 2011). In contrast, critical taper’s in-sequence thrusting rapidly loads rocks beneath
the MHT, then soon after exhumes them as the MHT steps to a lower level, so the prograde
path remains in the kyanite stability field (Figure 10b). Very generally, channel flow predicts
(Figure 10a,c) (a) high-T, low-P metamorphic arrays in the andalusite and sillimanite stability
fields, (b) isobaric heating P-T paths for LHS and THS and isothermal exhumation paths for
GHS, and (c) nearly synchronous initial cooling of all metamorphic levels, especially linking
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Wedge model–predicted P-T paths in comparison with data. (a,b) Predicted P-T paths (heavy arrowed lines), reported GHS P-T paths
(thin pink lines) (Ganguly et al. 2000, Harris et al. 2004, Kohn 2008, Groppo et al. 2012, Rubatto et al. 2013), and region of LHS and
THS P-T paths (blue and orange fields) (see Figure 5c). (c,d ) Predicted T-t paths (colored dashed lines) and petrologically significant times
( gray dotted lines) in comparison with data from Langtang (squares) (Kohn 2008). Model paths are based on Jamieson et al. (2004), Kohn
(2008), Herman et al. (2010). Geologic abbreviations: GHS, Greater Himalayan Sequence; LHS, Lesser Himalayan Sequence; THS,
Tethyan Himalayan Sequence. Mineralogic abbreviations: Ab, albite; Alsi, aluminosilicate; And, andalusite; Kfs, K-feldspar; Ky,
kyanite; L, liquid; Ms, muscovite; Sil, sillimanite. Other abbreviations: Peak, peak metamorphic age (bracketed by lowest-Y Mnz cores
and high-Y Mnz rims); XTL, crystallization of in situ melts (growth of high-Y Mnz rims at ∼700◦C).

crystallization of in situ melts in the GHS hanging wall with peak metamorphism in the LHS
footwall. In contrast, critical taper predicts (Figure 10b,d) (a) intermediate P-T arrays in the
kyanite stability field, (b) limited heating P-T paths for LHS and THS, and (c) systematically
decreasing metamorphic ages structurally downward. Critical taper’s predicted P-T paths for
GHS rocks depend on specific models, which include isobaric cooling (Kohn 2008), exhumation
with cooling (Herman et al. 2010), and isothermal exhumation (Huerta et al. 1999).

Many petrologic and chronologic observations are more consistent with critical taper (Kohn
2008) (Figure 10b,d), including relatively cool P-T conditions within the kyanite stability field
(Figure 4), LHS and THS P-T paths that show limited heating (Figure 5), some GHS P-T paths
that show isobaric cooling (Figure 10b), and T-t histories that demonstrate significant decreases
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in metamorphic ages structurally downward with a significant time lag between melt crystallization
in the hanging wall and peak metamorphism of the footwall (Figure 10b). Some observations are
consistent with both models, particularly the large temperature gradient in the region of the MCT
(Figure 4). GHS P-T paths involving high-T isothermal exhumation (Figure 5) are generally
more consistent with channel flow (Figure 10b) because qualitatively similar paths are intrinsic
to channel flow but to only a subset of critical taper models.

Whereas low-P, high-T overprinting assemblages and repeated intrusion of leucogranites,
particularly from Nyalam through western Bhutan, are commonly linked to channel flow (e.g.,
Davidson et al. 1997), they do carry petrologic ambiguities. First, incompatibilities between
regional metamorphic Ts and leucosome and leucogranite Ti-in-Zrc and Zrc-saturation Ts
(Figure 8c) raise questions about the genetic links between leucogranites and regional metamor-
phism. Repeated crystallization of relatively low-T melts would seem to imply cold country rocks,
arguably <∼300◦C since ∼20 Ma in the Everest region (Viskupic et al. 2005). Second, channel
flow–induced decompression melting to form leucosomes and leucogranites should produce one
major pulse of melting, rather than the protracted repeated intrusion that is commonly observed
(Harrison et al. 1999) (Figure 8c). Last, Pognante & Benna (1993) hypothesized that low-P,
high-T assemblages do not reflect a single exhumational continuum but rather overprinting
thermal pulses (polymetamorphism; see also Visona et al. 2012). Yet, what could source such heat?
Leucogranite intrusions several kilometers thick (e.g., Searle 1999) could locally heat surrounding
rocks, but most leucogranites are probably not sufficiently large, hot, widespread, or synchronous
to affect such a large sector. Increased mantle heat flux (e.g., from asthenospheric upwelling in
the wake of slab breakoff; Kohn & Parkinson 2002), high radioactive heat production (Rao et al.
1976), and heat refraction below the THS (low thermal conductivity in THS rocks; Pinet &
Jaupart 1987) could all fuel anomalously high Ts, possibly generating some leucogranites (e.g.,
Guilmette et al. 2011, Groppo et al. 2012). But these processes operate on long timescales (tens
of millions of years), and it is unclear how they would cause thermal overprinting only ∼10 Myr
after maximum Ps were reached (e.g., see data in Corrie et al. 2010, Rubatto et al. 2013).

Models of Extension

Common models for the formation of the STDS and its impact on metamorphism include wedge
collapse, channel flow, and wedge insertion. Wedge collapse assumes that high topography or
changing physical properties trigger a singular flattening event (e.g., Burchfiel & Royden 1985,
England & Molnar 1993a) (Figure 11a), which can homogeneously flatten the forward portion
of a wedge while the rear of the wedge undergoes heterogeneous extension, forming the STDS
(Figure 11a). Channel flow (Beaumont et al. 2001, Jamieson et al. 2004) (Figure 11b) requires
long-term normal-sense shear along the channel’s upper boundary to permit forward flow of the
weak channel. In wedge insertion (passive roof thrust or tectonic wedging; e.g., Yin 2006), the
STDS forms as the GHS is inserted between the THS and LHS (Figure 11c).

All these models can explain an upward continuous or discontinuous decrease in T from the
GHS to the THS depending on mode of deformation and magnitude of shear, but they make
different predictions about P distributions (Figure 11). Sparse data from northwestern India
(Figure 4b) suggest a lithostatic gradient, perhaps indicating an absence of the STDS there
(Figure 3a). Otherwise, a THS outlier in the Shemgang region of central Bhutan (Figures 1, 3c,
and 4k) provides the most comprehensive data set (Corrie et al. 2012). These rocks occupy the
frontal portion of GHS and THS exposures and exhibit a linear P distribution that is ∼2 times
steeper than lithostatic. This gradient indicates that the entire section has been homogeneously
thinned or flattened by a factor of ∼2 (from ∼20 to ∼10 km thickness), consistent with wedge
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Figure 11
Models of development of the STDS and implications for the distribution of P versus structural distance in comparison with data from
THS outlier in the Shemgang region, central Bhutan (Figures 1 and 3c) (a) Wedge collapse (Corrie et al. 2012; modified with
permission from Elsevier): homogeneous flattening toward the foreland and extensional faulting (STDS) toward the hinterland. The
magnitude of flattening defines P versus structural distance: No flattening (1×) yields lithostatic gradient, and increased flattening
(1.5×, 2×) yields increasingly steep (superlithostatic) gradients. The observed gradient implies ∼2× flattening. The inset shows
distributions of transects across the THS synclinal outlier. (b) Channel flow (modified from Godin et al. 2006): postmetamorphic
flattening in the channel orifice. The black curve of P versus distance is based on Jamieson et al. (2004). The dashed curve shows the
best fit to data but implies a different structural relationship to the MCT. (c) Wedge insertion (modified from Yin 2006): no flattening
predicted. Abbreviations: GHS, Greater Himalayan Sequence; LHS, Lesser Himalayan Sequence; MHT, Main Himalayan Thrust;
STDS, South Tibetan Detachment System; THS, Tethyan Himalayan Sequence.

collapse (Figure 11a). Channel flow also predicts postmetamorphic flattening, but the observed
P gradient should increase with decreasing structural level because deeper, hotter, and weaker
rocks should be flattened more (Figure 11b). Changing the T and rheological distributions might
reconcile models and observations but might also shut down flow. Current wedge insertion models
do not include flattening (Figure 11c), but it is also not precluded. Superlithostatic P gradients
also occur at Langtang and Kumaun (Figure 4e) and may point to flattening as a common
process.
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Exhumation of Eclogites and Granulites

UHP eclogites must form in all subduction zones, but they rarely appear on Earth’s surface. In
the Himalaya, peak pressures for exposed UHP rocks were reached 5–10 Myr after the initiation
of collision. Why were these particular UHP rocks exhumed, and no others (that we know of )?
Classically, slab breakoff has been favored, in which the leading edge of the continental slab first
is dragged to UHP depths by dense oceanic lithosphere, then rebounds buoyantly as the oceanic
slab detaches (e.g., Chemenda et al. 2000, Kohn & Parkinson 2002) (Figure 12a). A thrust slice of
upper crustal UHP rocks is rapidly emplaced at high structural levels, where it undergoes slower
exhumation and cooling. Although this scenario is perhaps qualitatively plausible, comprehensive
numerical analysis (Warren et al. 2008a,b) demonstrates that upper crust can simply detach from
the denser lower crust and lithospheric mantle without slab breakoff. Instead, corner flow develops
in the early stages of continental subduction, rapidly returning a slab of continental UHP rocks
to the middle crust (Figure 12b). Alternatively, a transition from subduction of thinned weaker
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Figure 12
Models of exhumation of eclogites and granulites. (a) Conceptual model (Chemenda et al. 2000) and (b–d ) numerical models (Warren
et al. 2008a,b; modified with permission from Elsevier) for exhumation of ultrahigh-pressure (UHP) eclogite. (e) Model for expulsion of
high-pressure eclogite along the trace of the Main Himalayan Thrust (Corrie et al. 2010; modified with permission from Elsevier),
analogous to the numerical LHO-2 model of Beaumont et al. (2006). ( f ) Crustal aneurysm model for exhumation of syntaxis granulites
(Zeitler et al. 2001a,b), illustrating how rapid erosion couples with weak partially molten rocks.
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crust to thicker and stronger continental crust may introduce a relatively stiff plunger to the wedge
and force rapid UHP exhumation (Figure 12c). Slab breakoff can also occur, especially for slow
subduction, but models suggest that UHP rocks then ascend not as discrete thrust slices but as
diapirs (Figure 12d ). For fast subduction rates of approximately 5 cm/yr, each of these models
predicts P-T paths involving nearly isothermal exhumation, commensurate with observed P-T
paths (Figure 6a).

Formation of eclogites after initial collision is unsurprising because many thermal models
predict eclogite-facies conditions along the MHT (e.g., Henry et al. 1997). Thus, tectonic inter-
pretations of younger eclogites center on their exhumation and relation to the granulite-facies
overprint. Two models have been proposed (Groppo et al. 2007, Corrie et al. 2010) that both
appeal to singular events in the context of UHP and orogenic wedge models. Possibly, anal-
ogous to exhumation of UHP rocks, the eclogites were detached from subducting continen-
tal lithosphere, accreted to the base of the Himalayan wedge, and exhumed along the MHT
(Figure 12a,d). Heating to reach granulite-facies conditions resulted from slow initial exhuma-
tion. Alternatively, inasmuch as Himalayan isotherms are inherently sigmoidal, upward expulsion
of eclogites within the orogenic wedge (e.g., Beaumont et al. 2006) could lead to increasing T with
decreasing P, causing a granulite-facies overprint (Figure 12e). The granulitized eclogites occur
in the same belt as the high-T, low-P metamorphic overprint. Presumably, mechanisms of high-T
overprinting—either polymetamorphism or rapid exhumation—could apply to the eclogites and
their host gneisses.

Three models are proposed to explain the occurrence of syntaxial granulites. As with the
eclogites, late-stage slab breakoff might catalyze exposure (Xu et al. 2010). Local cross-compression
in the bend region could also lead to high-amplitude folding or a pop-up structure (Burg et al. 1998,
Schneider et al. 1999). Alternatively, the tectonic aneurysm model (Figure 4f ) links structural
development and exposure to rapid erosion (Zeitler et al. 2001a,b; Koons et al. 2002). Rapid
erosion bows isotherms, leading to partial melting, crustal weakening, and focused midcrustal
flow, which maintains topography and balances rapid erosion. Like channel flow, as material is
removed at the surface, midcrustal material flows laterally and upward to replace it. Although
several rivers traverse the Himalayan range, the Indus and Yarlung Tsangpo have far greater
discharge, promoting some of the highest erosion rates on Earth (Zeitler et al. 2001b). Predicted
P-T trajectories (Koons et al. 2002) show exhumation from 775◦C, 9 kbar to 675◦C, 4 kbar,
broadly compatible with P-T paths from the syntaxes (Figure 7).

SUMMARY POINTS

1. Despite some false starts, most petrologic investigations now recover P-T conditions and
paths that are consistent with phase equilibria and petrologic models of mineral compo-
sitional zoning. These data quantify P-T gradients and paths across major thrust systems,
although high Ts and complex reaction textures in the GHS have led to interpretational
ambiguities. The steep P-T gradient across the MCT reflects protracted thrusting along
a thin thrust zone, whereas the shallow gradient in the LHD reflects accumulation of
small-displacement, in-sequence thrusts. Many named thrusts represent former traces of
the MHT.

2. UHP eclogites formed ca. 45–55 Ma and initially exhumed isothermally or with cooling,
but with thermal overprinting at moderate P. Such paths are consistent with several
different modes of UHP exhumation, including corner flow, diapiric rise, and plunger
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tectonics. Younger (ca. 25 Ma), lower-P, granulitized eclogites from eastern Nepal
through western Bhutan show substantially more heating, possibly related to thermal
overprinting in the region or expulsion upward in the context of overturned isotherms. A
crustal aneurysm model is commonly invoked to explain exhumation of granulites in the
syntaxes. Although this model is plausible, petrologic and chronologic data have yielded
conflicting results.

3. Accessory mineral microanalysis is revolutionizing petrologic and tectonic investiga-
tions. Monazite-based T-t histories are consistent with in-sequence thrusting in Nepal.
Titanite T-t histories as determined microanalytically constrain prograde heating rates.
Leucogranite and Zrc Ts are difficult to reconcile with regional petrologic patterns,
however.

4. Petrologic data from the LHS and THS generally rule out differential heat transport
via flowing channels and thus favor critical wedge models. Petrologic and chronologic
evidence in favor of channel flow is arguably limited to isothermal exhumation in the
GHS in the eastern Nepal–western Bhutan sector. Evidence for orogenic flattening is
found in several transects but is relatively understudied.

FUTURE ISSUES

1. The renaissance in accessory mineral petrogenesis, geochemistry, and microanaly-
sis, especially the direct correlation between trace element thermometry and U-Pb
geochronology in titanite and zircon, promises substantial rewards for constraining meta-
morphic and tectonic rates. Petrologists have long emphasized petrogenetic models to
explain chemical variations in minerals. Geochronologists must do the same, i.e., char-
acterize chemical domains and target chronologic analysis accordingly.

2. The ages and conditions of leucogranite emplacement have proven difficult to reconcile
with independent P-T-t data, especially when high petrologic Ts are compared with low
zircon and magmatic Ts. Excepting large leucogranite bodies, tectonically motivated
chronologic research on leucogranites and migmatites cannot proceed without resolving
these petrogenetic ambiguities.

3. Few studies quantify P-T conditions or P-T-t paths for rocks that span the STDS. Vali-
dating models of extension in compressional settings will require better characterization
of THS metamorphism.

4. Refined chronologic analysis is warranted for UHP eclogites and syntaxial granulites
using chemically and mineralogically fingerprinted mineral domains.

5. Further petrologic and chronologic investigation is needed for GHS rocks, wherein
post-peak, high-T processes overprint and mask structures.
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Lavé J, Avouac JP. 2001. Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J. Geophys.
Res. 106(B11):26561–91

Law RD, Searle MP, Godin L, eds. 2006. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision
Zones. Geol. Soc. Spec. Publ. 268. London: Geol. Soc. Lond.

Le Fort P. 1975. Himalayas: the collided range. Present knowledge of the continental arc. Am. J. Sci. 275-
A:1–44
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