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Most magmatism on Earth forms by direct melting of the mantle, generating basalts at the low silica end
of the terrestrial compositional spectrum. However, most subduction zone magmas erupted or sampled
at the surface are basalt-andesitic to andesitic and hence have higher Si contents. Endmember hypotheses
for the origin of andesites are: (1) direct melting of the mantle at water-saturated conditions, (2) partial
re-melting of altered basaltic crust, (3) crystal fractionation of arc basalts in crustal magma chambers,
and (4) mixing of mafic magmas with high Si crust or magmas, e.g., dacite–rhyolite. Here, we explore
the possibility of using Zr and P systematics to evaluate the importance of some of these processes.
Direct melting of the mantle generates magmas with low Zr (<50 ppm) and P2O5 (<0.2 wt.%). Crystal–
liquid segregation should drive an increase in P and Zr in the residual magma because the magma is
initially undersaturated in zircon and apatite. With further cooling and crystallization, apatite followed
by zircon will saturate, causing P and Zr to decrease so that most rhyolites and granites will have low
P and Zr (high temperature rhyolites may never saturate in zircon and will maintain high Zr contents).
Mixing of basalts with rhyolites having low P and Zr should generate coupled decreases in Zr and P with
increasing SiO2. Here, we show that Zr (>100 ppm) and P2O5 (>0.2 wt.%) in island- and continental-arc
magmas initially increase to levels higher than what can be achieved if andesites form by direct mantle
melting. As Si increases, both Zr and P decrease with Zr decreasing at higher Si, and hence lagging the
decrease in P. These systematics, particularly the decoupled decrease in Zr and P, cannot be explained
by mixing, and instead, are more easily explained if andesites are dominantly formed by crystal–liquid
segregation from moderately hydrous basalt, wherein P and Zr are controlled, respectively, by early and
later saturation in apatite and zircon. Although there is clear isotopic and outcrop (enclaves) evidence for
mixing in magmatic systems, crystal–liquid segregation appears to be the dominant process in generating
intermediate magmas, with mixing playing a secondary role.
Finally, recent studies have suggested that the abundance of certain magma compositions in a given
volcanic setting may be dictated by the optimal crystallinity window for efficient crystal–liquid separation
(50–70 vol%). We show that the SiO2 content of the residual liquid in this crystallinity window increases
with increasing water content. We thus speculate that high water contents (>2 wt.% H2O) may favor
extraction of andesitic and dacitic liquids while lower water contents favor extraction of more basaltic
magmas. If continental arc magmas tend to be more andesitic, as often believed, it follows that they
may begin more water-rich than island arc magmas, which are basaltic. In any case, if intermediate arc
magmas are formed dominantly by crystal–liquid fractionation, large volumes of complementary mafic
cumulates must be generated during the formation of andesitic magmas, as is seen in well-exposed
crustal sections.
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1. Introduction

1.1. The andesite problem

It is well-known that Earth’s continental crust is andesitic
and that andesites are predominantly found at subduction zones
(Taylor and McLennan, 1985). Understanding how andesites form
is thus critical for understanding why the Earth has continents.
There are many ways to make andesites (Gill, 1981; Carmichael,
2002), but whether any mechanism dominates is unclear. For ex-
ample, making andesites by direct hydrous melting of the man-
tle was motivated by experimental studies showing that andesitic
melt can be generated by water-saturated melting of the up-
per mantle (Kawamoto and Holloway, 1997; Carmichael, 2002;
Grove et al., 2012) and very likely explains the origin of boninites
(Falloon and Danyushevsky, 2000). However, it is unclear whether
such high water contents can be sustained in the mantle wedge
at all subduction zones, particularly in regions where hot and
young oceanic crust is being subducted and much of the slab
dehydration may occur before the magmatic arc front (e.g., Cas-
cadia subduction zone; Syracuse et al., 2010). Making andesites by
slab melting is another possibility, but requires hot slab surface
temperatures (Yogodzinski and Kelemen, 1998; Rapp et al., 1999;
Yogodzinski et al., 2001; Rapp et al., 2003) that may not be
achieved in all subduction zones. Making andesites by re-melting
of basaltic lower crust has been shown to be energetically unfavor-
able (Dufek and Bergantz, 2005). Generating andesites by crystal–
liquid segregation (Gill, 1981; Jagoutz et al., 2009; Dessimoz et
al., 2012), while energetically simpler, is faced with the prob-
lem of how to efficiently separate such viscous liquids from the
crystals. Finally, a mixing origin for andesites is motivated by iso-
topic signatures of crustal contamination (Hildreth and Moorbath,
1988; Dungan and Davidson, 2004), the presence of mafic enclaves
(Eichelberger, 1975; Furman and Spera, 1985; Wiebe et al., 1997;
Clynne, 1999), and a reported lack of intermediate melt inclusion
compositions (Reubi and Blundy, 2009; Kent et al., 2010; Özdemir
et al., 2011) (Fig. 1a). However, gaps in melt composition are not
observed everywhere (Straub, 2003). It is also unclear whether
mixing of mafic magmas into felsic magmatic systems is efficient
because mafic magmas, owing to their higher solidus and liquidus
temperatures, are likely to solidify upon contact with felsic melts,
decreasing the efficiency of mixing (Sparks and Marshall, 1986;
Paterson et al., 2004; Caricchi et al., 2012).

1.2. Potential insights from elements that are controlled by accessory
minerals

Distinguishing between the above mechanisms of forming an-
desites using major elements is challenging. Major elements are
buffered by temperature, pressure and the dominant mineral
phases in the crystallizing assemblage. If the composition of the
bulk crystallizing assemblage does not change fundamentally dur-
ing differentiation, major element fractionation trends will gener-
ate linear arrays in Harker variation diagrams, making it difficult to
distinguish from mixing, which also generates linear arrays. Only
when a fundamentally different crystallizing phase appears, will
differentiation trends become nonlinear and distinguishable from
simple mixing. For example, saturation of an oxide phase like
magnetite results in a sudden decline in total Fe in the resid-
ual magma. The appearance of magnetite in the crystallization
sequence manifests itself as a distinct kink in FeOT versus MgO
variation diagrams. However, because magnetite saturation occurs
before or even drives the initial Si enrichment of the basalt, Fe
and other major elements turn out to be not particularly diagnos-
tic in evaluating the mechanisms by which Si is further enriched
to make andesites.
Fig. 1. Probability histogram for SiO2 (wt.% on a volatile-free basis) in (a) melt inclu-
sions (gray field), (b) lavas and magmas from the Marianas Island arc, (c) lavas and
magmas from the Andean continental arc, and (d) plutonic rocks from the Peninsu-
lar Ranges Batholith (PRB) in California (USA). Fields of basalt (B), basaltic-andesite
(BA), andesite (A), dacite (D), and rhyolite (R) are shown in (a).

Isotopes are powerful tracers for evaluating mixing between
crustal and mantle components. For example, there is no doubt
that crustal assimilation or remelting is important in the forma-
tion of evolved rocks with radiogenic and stable (e.g., oxygen) iso-
topic compositions distinct from more primitive endmembers in
a differentiation suite (Hildreth and Moorbath, 1988; Kistler, 1990;
Chappell et al., 1992; Zeck and Williams, 2002). In other cases, iso-
topes alone may not resolve the andesite problem. There are exam-
ples in which radiogenic isotopes remain relatively constant over
SiO2 contents ranging from basalt to rhyolite (Coleman et al., 1992;
Francalanci et al., 1995; Lee et al., 2007; Deering et al., 2011) be-
cause the mafic and felsic endmembers are isotopically similar or
because crustal contamination occurred early in the magmatic dif-
ferentiation process.

Trace elements, such as Zr and P, which are controlled by the
appearance of accessory phases, such as zircon and apatite, may
provide an additional tool for distinguishing between some of the
above scenarios. When the magma is not saturated in these phases,
Zr and P do not partition significantly into the solid phases and
thus, their concentrations increase in the liquid with progressive
crystal segregation (Fig. 2). When the liquid saturates in zircon
and apatite, Zr and P in the liquid become buffered at levels con-
trolled by temperature and the major element composition of the
liquid (Watson and Harrison, 1983; Harrison and Watson, 1984)



268 C.-T.A. Lee, O. Bachmann / Earth and Planetary Science Letters 393 (2014) 266–274
Fig. 2. Modeled residual liquids formed by equilibrium crystallization of dry and hydrous parental basalts using Rhyolite-Melts (Gualda et al., 2012). P2O5 (wt.%) and Zr (ppm)
are plotted against SiO2 (wt.%) in (a) and (b), respectively. Elemental concentrations have been normalized to a volatile-free system. Temperatures at the liquidus, point of
saturation in apatite or zircon, and the solidus are shown for reference. Dashed straight line in (a) and (b) are hypothetical mixing lines.
such that Zr and P decrease with further crystallization. Impor-
tantly, zircon typically saturates at higher Si than apatite with the
delay between zircon and apatite saturation controlled by crystal-
lizing temperatures, phase assemblages and melt composition, all
of which in turn depend on water content. Under dry and hot
crystallization, zircon solubility is suppressed so that Zr peaks at
higher Si than under wet and cooler crystallization. Crystal–liquid
segregation therefore results in out-of-phase kinks in Zr and P dif-
ferentiation arrays. This contrasts with mechanical mixing, which
generates linear arrays in elemental variation diagrams (Fig. 2). In
this regard, Zr and P are useful because Si-enriching differentiation
trends generated by mixing and crystal–liquid fractionation are rel-
atively linear for major elements. Zr and P contents are also useful
in evaluating the importance of the mantle in generating andesites
because the mantle is poor in Zr and P and should therefore gen-
erate melts with low Zr and P.

2. Methods, data compilation, and reference crystallization
models

Arc melt inclusion and magma compositions were compiled for
the Marianas island arc, Peninsular Ranges batholith (PRB) in Cal-
ifornia, the southern Andes, and the Agean arc in Europe. Global
melt Inclusion data (n = 7382) were obtained from pre-compiled
files from the Georoc database (http://georoc.mpch-mainz.gwdg.
de/georoc/). This is the same database used in Reubi and Blundy
(2009), which allows us to reproduce their results. Data for the
Peninsular Ranges Batholith (n = 289) are from Lee et al. (2007).
Data for Marianas Island arc (n = 507 for Zr and 538 for P)
are from Earthchem (http://www.earthchem.org). For the Andes,
we used only the southern Andean arc in Chile (n = 1974 for
Zr and 2304 for P). For the Aegean arc, we used pre-compiled
files from the Georoc database (n = 1056 for Zr and 1367 for P).
Data were filtered to exclude rocks that were obviously cumu-
lates (e.g., olivine gabbros), but not all cumulates, especially those
with intermediate compositions, could be excluded due to the dif-
ficulty in distinguishing cumulates from magmas based on major
elements alone. Thus, some primitive samples (low SiO2) with
high P2O5 most likely represent cumulates and should be ig-
nored in Figs. 3 and 4. Finally, basaltic andesites or andesites
(55–56 wt.% SiO2) with high Mg# were identified. These high
Mg# rocks include boninites. To identify these rocks, we used
the following criteria Mg# � 0.00294SiO2

2 − 0.3697SiO2 + 11.953
(where Mg# = atomic Mg/(Mg + FeT) and FeT represents total Fe)
(Fig. 5). Although our criterion for identifying high Mg# samples
is rather arbitrary, we are consistent in its application in all fig-
ures.

Residual liquid compositions were calculated using the Rhyolite-
MELTS thermodynamic programs (Gualda et al., 2012) (Fig. 2).
Calculations were done for closed-system batch crystallization be-
ginning from the liquidus and cooling at 20 ◦C temperature in-
tervals at constant pressure. A starting composition equivalent
to an evolved basalt/gabbro in the Peninsular Ranges Batholith,
California was assumed (52.1 wt.% SiO2, 0.68 TiO2, 18.3 Al2O3,
7.24 FeOT, 5.55 MgO, 10.5 CaO, 2.6 Na2O and 0.38 K2O), though
the differentiation trends are not particularly sensitive to the
starting composition so long as it is basaltic. Oxygen fugac-
ity was buffered at the fayalite–magnetite–quartz buffer. Three
scenarios were modeled: (1) 0.1 GPa crystallization at anhy-
drous conditions, (2) 0.3 GPa crystallization with bulk H2O of
1 wt.%, and (3) 0.3 GPa crystallization with bulk H2O of 4 wt.%.
Crystallization paths involving higher water contents progress
to lower final temperatures due to solidus depression. Zr and
P were modeled by post-processing the MELTS output. MELTS
may slightly under-estimate SiO2 content of extreme residual liq-
uids, but this does not change overall behavior. Initial Zr and
P2O5 contents of the parental basalt was assumed to be 52 ppm
and 0.15 wt.%, respectively, to match natural rocks of this SiO2
content. Zr and P at zircon and apatite saturation were cal-
culated using established solubility models (Watson and Har-
rison, 1983; Harrison and Watson, 1984). As a first approxi-
mation, Zr and P were assumed to be perfectly incompatible
in all crystallizing phases except, of course, for zircon and ap-
atite.

3. Results: Zr and P systematics of arc magmas

We examined the Zr and P systematics of arc magmas and
melt inclusions, respectively representing liquid–crystal mixtures
in volcanic/plutonic rocks and homogeneous liquids trapped in
phenocrysts (Figs. 3 and 4). The Marianas arc is used as an ex-
ample of an island arc (Fig. 3c, d), while the southern Andes
(Chile), the Peninsular Ranges batholith in southern California
(USA), and the Aegean arc are used as examples of continental
arcs (Fig. 4).

For most magmas, Zr rises from ∼50 to ∼100–150 ppm and
P2O5 rises from 0.1 to 0.3 wt.% as SiO2 increases. Zr and P then

http://georoc.mpch-mainz.gwdg.de/georoc/
http://www.earthchem.org
http://georoc.mpch-mainz.gwdg.de/georoc/
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Fig. 3. Plots of P2O5 (wt.%) and Zr (ppm) versus SiO2 for arc melt inclusions in (a) and (b) and Marianas island arc lavas in (c) and (d). Melt inclusion data include the following
arcs: Sulawesi, New Zealand, New Hebrides, Mexico, Marianas, Luzon, Lesser Antilles, Kuriltes, Kermadec, Kamchatka, Central America, Cascades, Andes and Aleutians. Boxes
in each panel refer to estimated P2O5 and Zr contents of mantle-derived magmas, such as basalts and boninites. High Mg# andesites and basaltic-andesites, which would
include boninites, in the Marianas arc lava dataset (c and d) are defined here as magmas with SiO2 between 55–65 wt.% and Mg# � 0.00294SiO2

2 − 0.3697SiO2 + 11.953
where Mg# = atomic Mg/(Mg + Fe) and SiO2 (see Fig. 5). Large solid black circles represents model compositions for lower, middle and upper continental crust in order
of increasing SiO2 content (Rudnick and Gao, 2003). Straight dashed lines in each panel represent hypothetical mixing line between low Si (basaltic) and high Si (rhyolitic)
endmembers.
peak at ∼65 and ∼60 wt.% SiO2, respectively, followed by rapid
declines with further increase in SiO2, generating a kink in the Zr-
and P–SiO2 arrays that are broadly consistent with the modeled
crystallization trends for hydrous basalt. However, a small fraction
of the data, particularly for continental arcs, fall below the kink,
approaching the linear array predicted for binary mixing between
basalt and rhyolite. It can also be seen that those andesites identi-
fied to have high Mg#s have the lowest Zr and P contents in our
compilation.

For melt inclusions (Fig. 3a), intermediate compositions ap-
pear to be scarcer than in magmas, which Reubi and Blundy
(2009) have used to argue that melt inclusions represent real liq-
uids and magmas are crystal + liquid mixtures of mafic and fel-
sic endmembers. The overall Zr- and P–SiO2 systematics of the
melt inclusions nevertheless outline the overall rise and fall of
Zr and P as seen in the magmas. This suggests that the dearth
of intermediate melt compositions may be a sampling bias intro-
duced in the global database (most melt inclusions are sampled
from olivine and quartz hosts, leading to an over-representation
of mafic and silicic melt) rather than a robust geological ob-
servation (see also melt inclusion data from Avachinsky volcano
in Kamchatka and volcanoes from the Izu Bonin-Marianas arc
(Straub, 2003; Krasheninnikov and Portnyagin, 2011)), which sup-
ports the inference of a biased sampling in the global melt inclu-
sion database.

4. Discussion

4.1. On making primary mantle-derived andesites

The high Zr and P at intermediate SiO2 are not easily explained
by direct derivation of the mantle. For example, 10–20% melting
of an upper mantle with 5 ppm Zr and 0.019 wt.% P2O5, equiva-
lent to that estimated for depleted mid-ocean ridge basalt mantle
(Workman and Hart, 2005), yields primary liquids with 25–50 ppm
Zr and 0.1–0.2 wt.% P2O5 (these are upper bounds because sub-arc
mantle may be more depleted than ambient mantle). These lev-
els are lower than the majority of andesites shown in Fig. 4. The
only intermediate magmas that have sufficiently low Zr and P to
be consistent with a direct mantle origin are those basaltic an-
desites and andesites we identified as having high Mg# (Fig. 5),
which would include boninites (Figs. 3 and 4). Boninites, indeed,
are thought to represent the products of hydrous flux melting of
highly depleted peridotite (Falloon and Danyushevsky, 2000), but
the scarcity of intermediate rocks with low Zr and P suggests that
direct mantle melting is not the dominant mechanism for making
andesites globally.
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Fig. 4. Same as in Fig. 3, but (a) and (b) show continental arc lavas and plutons from the southern Andes and Peninsular Ranges Batholith (USA) and (c) and (d) show Aegean
arc magmas (reference sources in text). Symbols as in Fig. 3.

Fig. 5. Mg# versus SiO2 (wt.%) in Marianas Island arc magmas as in Figs. 3c and 3d in main text. Mg# is equal to Mg/(Mg + Fe∗) in atomic proportions, where Fe∗ corresponds
to total Fe. Basaltic andesites and andesites with anomalously high Mg# may be direct mantle melts under hydrous conditions. We have defined those magmas between
55–65 wt.% SiO2 with Mg# � 0.00294SiO2

2 − 0.3697SiO2 + 11.953 to be anomalously high in Mg#. This criterion was adopted for Figs. 3b and 3c in the main text.
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4.2. On making andesites by mixing basalt with high silica endmembers

The switch in the overall behavior of Zr and P, combined with
the fact that the Zr peak lags the P peak in terms of SiO2 as
a differentiation index, cannot be explained solely by mixing of
a basalt with any silicic endmember, such as a dacite or rhyo-
lite, because such a process would generate linear mixing arrays
and require that Zr and P decrease at the same SiO2. As noted
above, some intermediate samples (57—68 wt.% SiO2), particularly
in continental arcs, fall below the Zr and P peaks, suggesting some
involvement of mixing. However, for the examples studied here,
no more than ∼20% of intermediate continental arc and none of
the island arcs (excluding high Mg# andesites) fall on pure end-
member mixing arrays between basalt and rhyolite, indicating that
generating andesites and dacites by mixing basalts with rhyolites
is not the dominant process. The role of mixing is primarily to
blur the crystal fractionation signature as multiple parcels of mag-
mas at different stages of evolution interact during the incremental
growth of magma reservoirs. Our observations are broadly con-
sistent with the studies of Özdemir et al. (2011) and Kent et al.
(2010), who show that magmatic series at given volcanoes can
be cogenetic, generated by down-temperature crystallization, al-
beit sometimes overwhelmed by a mixing signal introduced just
before eruption (Kent et al., 2010). Similarly, recent studies show
that the mixing of mafic enclaves into felsic host plutons may be
rate-limited by chemical reaction between the enclave and host
pluton, which may occur late in the lifespan of the magma cham-
ber (Farner et al., 2014).

4.3. On making andesites by direct melting of subducted sediments

There is ample evidence that fluids and partial melts from
subducted sediments contribute to the trace element signature
of arc magmas, including arc basalts (Johnson and Plank, 1999;
Plank, 2005; Tollstrup and Gill, 2005). However, partial melts
of sediments are generally rhyolitic (Patino Douce and Johnston,
1991), so sediment melts are not likely to be dominant produc-
ers of andesites in arc systems, unless these sediment melts mix
with basalt (which we showed above to be rather limited). Fur-
thermore, He isotopic systematics of most of the circum-Pacific
island arc volcanoes are indistinguishable from mantle values, ar-
guing against an origin by slab or sediment melting (Poreda and
Craig, 1989). Nevertheless, it is worth evaluating the possibility of
a sediment origin for arc andesites in the context of Zr and P sys-
tematics. A key feature of greywacke and pelitic sediments is that
they have Zr and P concentrations much higher than mantle peri-
dotite and primary mantle-derived basalts owing to the presence
of zircon of detrital origin and apatite of detrital and/or biogenic
origin (Plank and Langmuir, 1998). Thus, partial melts of sediments
would generally be expected to be saturated in zircon and apatite,
and consequently, their Zr and P concentrations should follow the
saturation curves. As can be seen from Figs. 2–4, this would predict
andesitic magmas with Zr contents much higher than andesites
derived from fractionation of basalt, which would be zircon under-
saturated. Thus, although the influence of sediment melts to the
trace element signature of arc magmas is undisputed, it seems un-
likely that sediment melts are volumetrically important enough to
be the dominant producers of andesites or arc crust in general.

4.4. On making andesites by direct melting of pre-existing mafic rocks

Making andesites by partial melting of pre-existing mafic rocks
cannot be ruled out from Zr and P systematics alone. In terms
of geochemistry, equilibrium melting and equilibrium crystalliza-
tion are identical. However, generating the entire spectrum of arc
magma compositions via melting of mafic crust would require par-
tial melting fractions to range from low degrees (generating rhyo-
lite) to complete melting (generating basalt). In addition, generat-
ing large volumes of basalt by re-melting mafic rocks is energeti-
cally inefficient. In magmatically active areas, the heat for melting
pre-existing rock comes from heat advected in by magmatic intru-
sions, but a significant component of such heat is consumed by
first heating the country rock up to the solidus before any coun-
try rock melting can occur (e.g., see discussions as early as in
Bowen (1928)). Various models have shown that crustal melting
of refractory, sub-solidus mafic lithologies is inefficient in produc-
ing large volumes of silicic melts (Barboza and Bergantz, 2000;
Dufek and Bergantz, 2005; Annen et al., 2006; Gelman et al., 2013).

4.5. On making andesites to rhyolites by crystal–liquid segregation

The simplest explanation for the Zr and P systematics of arc
magmas with intermediate silica content (andesites – dacites) is
that andesites are formed by crystal fractionation from mafic par-
ents, in which zircon and apatite join the crystallizing assem-
blage at intermediate but different SiO2. The observation that Zr
peaks at dacitic rather than rhyolitic compositions suggests that
crystallization occurs dominantly under hydrous and cool condi-
tions rather than dry and hot conditions because the latter would
suppress zircon saturation until the magma reaches near-solidus
temperature (see also differentiation in alkaline series in which
zircon never reach saturation, e.g. Wiesmaier et al., 2012). These
hydrous conditions are consistent with the low Zr contents of
dacites and rhyolites, which imply crystallization temperatures be-
tween 700–800 ◦C (Figs. 2 and 3), well below the dry solidus of
rhyolite and dacite. Finally, as shown in Fig. 1, rhyolites are vol-
umetrically limited in arc magmatic suites (e.g., Hildreth, 2007),
consistent with rhyolites being formed as extreme, late stage resid-
ual liquids in the upper crust (Fowler and Spera, 2010; Gualda
and Ghiorso, 2013). We thus suggest that silica enrichment in arc
magmas, all the way to rhyolites, is dominantly produced by down-
temperature crystallization from hydrous basaltic parents. This has
petrogenetically been shown to be plausible (Dessimoz et al., 2012;
Jagoutz and Schmidt, 2012).

Our conclusion that silica enrichment is dominantly controlled
by crystal fractionation may seem at odds with the observa-
tion that andesites and their plutonic equivalents, particularly in
continental arc environments, often have evolved radiogenic iso-
topic compositions or non-mantle like oxygen isotopes, requir-
ing incorporation of old crustal components (Lipman et al., 1978;
Francis et al., 1980; Taylor, 1980). This apparent inconsistency is
reconciled if contamination by crustal components occurs concur-
rently or before the magmatic system has undergone significant
increase in SiO2. One possibility is that hydrous mantle-derived
basalts first pond in the deep crust, where they undergo simul-
taneous crystallization, assimilation of mafic lower crust, and mag-
matic recharge (Hildreth and Moorbath, 1988; Annen et al., 2006;
Lee et al., 2013), generating an evolved basalt with inherited
crustal isotopic signatures (Fig. 4). Residual melts generated in this
deep crustal staging and blending zone then rise upwards and sub-
sequently differentiate into magmas with an extended range of
silica contents (Fig. 4). Such a scenario explains how some vol-
canic and plutonic suites can be diverse in major element compo-
sition and, at the same time, have relatively uniform, but crustal
contaminated isotopic compositions (e.g, Coleman et al., 1992;
Deering et al., 2011). Some crustal contamination can also oc-
cur in the mid- to upper crust, as magmas have reached more
evolved compositions (e.g., Boroughs et al., 2005; Bindeman et
al., 2008; McCurry and Rodgers, 2009; Mollo et al., 2009; Reubi
et al., 2011). However in most cases, incorporation of cold crust
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into differentiated magmas is likely to be volumetrically limited
(Thompson et al., 2002).

4.6. Why do intermediate compositions dominate in arc magmas?

An outstanding question is why do intermediate magmas dom-
inate arc magmatic suites, and, in detail, why are continental arcs
andesitic and island arcs basaltic to basalt-andesitic (Fig. 1)? Previ-
ous studies suggested that true intermediate liquids are actually
quite rare because of strong nonlinearities in how SiO2 varies
with temperature in fractionating magmas (Grove et al., 1997;
Reubi and Blundy, 2009; Melekhova et al., 2013). This has led to
the suggestion that the abundance of andesitic magmas (liquid +
crystals) is the result of mixing mafic and silicic liquids (Reubi
and Blundy, 2009; Melekhova et al., 2013). Mass balance consid-
erations require that such mixing involves roughly equal volumes
of basalt and rhyolite, followed by efficient mixing to generate
andesites. However, Figs. 1b–d (plus abundant field data in well-
characterized arcs (Hildreth, 2007) and hot spots and mid-ocean
ridges (Thordarson and Höskuldsson, 2008)) show that exposures
of rhyolites are volumetrically minor in every tectonic environment
(but particularly so in island arcs). In the context of the mixing hy-
pothesis, the paucity of rhyolitic magmas would imply that most
of the rhyolitic liquids have already been mixed to form andesites,
leaving little evidence of rhyolitic magmas other than in melt in-
clusions.

An equally robust alternative to mixing is crystal–liquid frac-
tionation. Crystal–liquid separation in magmatic systems is ex-
pected to be inefficient at low crystallinity because convection is
vigorous enough to keep stirring the reservoir and re-entraining
settling crystals (Dufek and Bachmann, 2010). Once a critical crys-
tal fraction is reached, the strength of convective re-entrainment
subsides, allowing crystal–liquid separation to happen most effi-
ciently by processes ranging from hindered settling to compaction
(Miller et al., 1988; Petford, 2003; Bachmann and Bergantz, 2004).
The optimal crystallinity window for physical separation of crys-
tals and liquids has been theoretically shown to be between
50–70 vol% because convective stirring is hampered but the mushy
reservoir is not completely clogged by crystals to prevent liq-
uid segregation altogether (McKenzie, 1985; Dufek and Bachmann,
2010).

The composition of the residual liquid at the optimum crys-
tallinity window for melt extraction is thus of interest. As seen
in Fig. 6, Rhyolite-MELTS simulations predict SiO2 content of ini-
tially dry magmas expelled at 50–70% crystal fraction to be basaltic
(∼54–57 wt.%). However, for hydrous conditions (3–5 wt.% H2O),
the expelled magmas at the same crystallinity window would be
andesitic to dacitic (∼57–65 wt.% SiO2). This is because the ef-
fect of water is to expand the temperature interval over which
crystallization occurs and to increase the SiO2 activity of the resid-
ual liquid. We thus speculate that because island arcs are more
basaltic and continental arcs more andesitic (Fig. 1), the initial wa-
ter content of parental basalts in island arcs is lower than that
of parental basalts in continental arcs. This inference may not be
unreasonable in light of the general observation that island arcs
follow Fe-enriching differentiation paths and continental arcs and
mature island arcs follow Fe-depleting paths (Miyashiro, 1974) due
to early crystallization of Fe–Ti oxides. Specifically, magnetite sat-
uration is thought to be controlled by water and oxygen fugacity
(Berndt et al., 2005; Zimmer and Plank, 2006). Under wet condi-
tions, magnetite saturates early, driving early Fe depletion. Under
dry conditions, magnetite fractionation is delayed, allowing Fe to
enrich in the residual magma. Exactly why continental arc magmas
are wetter and island arc magmas dryer is unclear. Possibilities
include differences in the composition of the sub-arc mantle or
Fig. 6. Crystal fraction versus residual liquid fraction estimated from thermodynamic
modeling of equilibrium crystallization of dry and hydrous evolved basalts. Critical
crystal fraction for efficient liquid segregation from a crystalline mush is denoted
by the vertical orange bar (Dufek and Bachmann, 2010). Intersection of this bar
with the model crystal fraction-SiO2 curves denotes the SiO2 content of the residual
liquid at the point of most efficient segregation. For typical arc magmas, this occurs
at 60–65 wt.%, generating andesites and dacites.

subducting slab, in the thermal state of the mantle wedge, or in
the nature of magmatic differentiation within the crust.

5. Summary words on andesite formation

Zr and P systematics in magmatic series imply that high pres-
sure crystal fractionation of hydrous basalts, coupled with some
lower crustal assimilation early (prior to silica enrichment) in the
differentiation process, is a fundamental mechanism by which arc
magmas today evolve towards intermediate to silicic compositions
(Fig. 7). Mixing between different magma endmembers undoubt-
edly occurs, as shown by many textural observations (e.g., pres-
ence of enclaves, zoning patterns in phenocrysts in erupted lavas
(Larsen et al., 1938; Pe-Piper and Moulton, 2008; Kent et al., 2010;
Özdemir et al., 2011)), but mixing alone is not central to the mag-
matic distillation that is generating the Earth’s continental crust.
Formation of andesites by direct mantle melting explains the origin
of boninites, but is unlikely to be a dominant process in making
the vast volumes of andesites in island and continental arcs.

A consequence of a crystal fractionation-dominated differentia-
tion scheme is the formation of large volumes of mafic and ultra-
mafic cumulates. Evolved basalts to dacites are produced in deep
crustal reservoirs by extraction of interstitial melt from partially
crystallized mush zones (Dessimoz et al., 2012). If deep enough,
plagioclase-free cumulates are left behind in the lower crust and
may eventually founder back into the mantle (Herzberg et al.,
1983; DeBari and Sleep, 1991; Ducea and Saleeby, 1996, 1998;
Greene et al., 2006; Lee et al., 2006, 2007; Jagoutz et al., 2009;
Jagoutz and Schmidt, 2012; Lee, 2014). If the pressures in the
lower crust are not high enough, plagioclase-bearing cumulates
will form (Blatter et al., 2013), but such cumulates would be dif-
ficult to founder owing to their low densities. In both cases, we
speculate that rhyolites also form dominantly by crystal fractiona-
tion (± some crustal assimilation), but from evolved parental mag-
mas that have ascended into the upper crust, (Bachl et al., 2001;
Deering and Bachmann, 2010). Such a model is consistent with
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Fig. 7. Cartoon showing polybaric multi-stage differentiation history of magmas.
Primary, mantle derived basalts rise from the mantle and stall in or below the
deep crust, resulting in cooling, crustal assimilation and crystal fractionation. This
generates a range of compositions from evolved basalts to dacites, depending on
conditions, such as water content. Andesites dominate in continental arc settings.
Such melts then rises into the middle and upper crust, where they differentiate
by crystal–liquid segregation to form rhyolitic liquids. Mixing can occur anywhere
along this path due to the incremental growth of reservoirs, but is not crucial to
the generation of intermediate magmas.

the few crustal cross-sections sampled at the surface of our planet
(Ducea and Saleeby, 1998; Lee et al., 2006; Jagoutz et al., 2009;
Jagoutz and Schmidt, 2012; Greene et al., 2006; Otamendi et al.,
2012). Quantifying the relative proportions of high and low pres-
sure crystal fractionation would go far in furthering our under-
standing of how arc magmas differentiate.
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