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Compositionally Stratified Cratonic Lithosphere:
Petrology and Geochemistry of Peridotite Xenoliths from
the Labait Volcano, Tanzania

C.-T. LEE and R.L. RUDNICK
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA

ABSTRACT

In northern Tanzania, manifestations of the East African Rift,

such as crustal warping, r;ftmg, and magihatism, are currently
propagating into the margins of the Archean Tanzanian craton, ITn
order to understand the factors that govern the origin and stability
of cratonic mantle, we are studying peridotite xenoliths from
the Quaternary Labait volcano, located on the northeastern edge
of the craton. We find that refractory mantle (Mg# up to 92)
persists to depths of at least 150 km, with a marked increase in
fertility at depths > 120 km. This compositional stratification
may be due to 1) an original variation in depth of degree of par-
tial melting, 2) refertilization from below of a preexisting
depleted mantle section, or 3) incremental downward growth of
the lithosphere with time. Re-Os systematics favor the latter two
hypotheses (Chesiey et al., 1998).

The refractory peridotites are less dense than pyrolite, and
the preservation of old Re-Os ages beneath Labait attests to the
perseverance of cratonic mantle despite proximity to rifting.
However, high proportions (75 %} of dense, Fe-rich (Mg# < 88)
dunites in the xenolith poputation and elevated temperatures at
depth indicate that chemical and thermal interaction of the
mantle section with asthenospheric magmas has and is ocourring.
Collectively, these features result in slow shear-wave velocities,
consistent with the resuilts of a recent seismic tomographic study,
which shows that the effects of rifting are beginning to propagate
info the cratonic mantle beneath Labait,

Keywords: xenolith, mantle, stratification, craton, density,
delamination, stability, refractory, isopyenic

1. INTRODUCTION

Geologic and geochemical studies of mantle xenoliths suggest
that cratons are underlain by an ancmalously thick, cold mantle
keel (Jordan, 1978; Boyd, 1989a), which can be stable over
timescales greater than two billion years (Richardson er al.,
1984; Walker et al., 1989; Pearson et al., 1995). Cooler temper-
atures should increase density and hence decrease the buoyancy
of mantle peridotite; if cold enough, entrainment into the
convecting mantle would be expected. The observed fongevity of
cratonic mantle beneath Archean shields, however, requires an
additional factor that compensates for the increased density
caused by colder temperatures. One possibility is that cratonic
mantle is intrinsically less dense than the surrounding mantle due
to its more depleted chemical composition (Ringwood, 1966;
Jordan, 1978), leading to the popular notion that cratenic keels
are regions of tectopic stability immersed within a mobile and
actively convecting mantle.

To determine how cratonic mantle is generated, stabilized,
and potentially destabilized, we are conducting an integrated
petrographic and geochemical study of mantle xenoliths from the
Labait voleano, located on the northeastern margin of the
Tanzanian craton. Because the Tanzanian craton is located within
an intracontinental rift, our results have implications for the
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effects of rifting on cratonic mantle, In addition, there are
ongoing geophysical studies in the same region (Ritsema et al.,
1998}, providing an unique opportunity to make direct com-
parisons between geophysical and geochemical datasets. Here,
we show that the Tanzanian mantle is compositicnally stratified,
with a step-wise increase in fertility with depth. We also show
that local Fe-enrichment is superimposed on the overall
compositional stratigraphy and that dense, Fe-rich peridotites
are the dominant xenolith types at Labait. We discuss the
implications of these findings for the origin and potential demise
of cratonic mantle.

2. REGIONAL GEOLOGY

The Tanzanian craton is an amalgamation of several Archean
granitoid terranes, which formed primarily during three short
periods (~2.9, ~2.7, and ~2.4 Ga) based on Snw/Nd, Rb/Sr, and
U-Pb dating (Pinna et al., 1996). In the northern portion of the
craton, these granitoids intrude and separate many large and
small greenstone belts (Borg and Shackleton, 1997). Re-Os
depletion ages for mantle xenoliths from Labait yield minimum
melt extraction ages of up to ~2.8 Ga, indicating that stabili-
zation of the lithospheric mantle occurred by the end of the
Archean (Chesley ef al,, 1998). The craton is surrounded by
several Proterozoic mobile belts. It is bounded to the east by the
polycyclic collisional Mozambique belt (900-500 Ma), which
consists of a region of reworked Archean crust directly east of the
craton {based on Sm-Nd model ages; Méller ef af,, 1998), and a
region of younger, accreted crust further east and northeast
(Pinna et al, 1996; Moller et al., 1998). To the east and south-
east, the craton is bounded by the Usagaran Belt, which is a
Proterozoic subduction zone (based on U-Pb dates of meta-
morphic minerals from eclogite facies rocks (Moller ef al.,
1995)). To the southwest, the craton is bounded by the Early to
Middle Proterozoic Ubendian Belt (2.0 Ga), to the west by the
Late Proterozoic Karagwe-Ankolean Belt and the early
Paleozoic Bukoban system, and to the northwest by the
Ruwenzori Belt of Uganda.

In northern Tanzania, Cenozoic tectonism is dominated by
rifting. The Bastern Branch of the East African Riff system, the
Gregory Rift, is composed of three distinet rifts, the NW-trend-
ing Pangani rift, the N-S-trending Natron-Manyara-Balangida
rift, and the NE-trending Eyasi-Wembere rift. The latter two
rifts transect the boundary between Archean and Proterozoic
crust (Ebinger et al, 1997; Foster e al,, 1997). The present rift
basins and volcanism are mostly younger than 2 Ma, with ages
not exceeding 4 Ma (Dawson, 1992). The xenolith locality,
Labait, is an olivine-melilitite volcano (4° 34°§, 35° 26'R)
composed of flows and tuffaceous units and located in the
Tanzanian section of the East African Rift, south of Mount
Hanang on the northeastern edge of the Tanzanian craton
(Dawson ef al, 1996). The eruption age is constrained to be
Quaternary by U-Pb dating of metasomatic zircons in a mantle
xenolith (Rudnick er al., 1998).




Geophysically, the Tanzanian craton is characterised by high
elevation, a negative Bouger gravity anomaly (Ebinger ef al.,
1997), and Iow surface heat flow (Nyblade et al., 1990). Results
from a tecent broad-band seismic experiment show that the
Tanzanian mantle root is largely intact beneath the craton, that
the uplift and negative gravity anomaly are due to hot, low den-
sity material beneath the cratonic root, and that erosion and/or
heating of this ancient root is confined to the vicinity of the rift
{Ritsema et al,, 1998).

3.  OVERVIEW OF XENOLITH SUITES
To estimate the proportions of various xenolith types, we syste-
maticalty collected afl xenoliths encountered during the first half
day of fieldwork {n = 117). Fe-rich dunites make up ~75% of the
Labait xenoliths and were identified in the field by the dark
green color of their olivine. Of these, 25% contain visible
chrome diopside in hand-specimen. Residual peridotites make
up 22% of the xenoliths and were identified by their light-green
olivines. The remaining <3% consist of lower crustal xenoliths
(granulites), glimmerites, and pyroxenites. In this paper, we
focus on a smaller selection of samples, which consists of 38
residual peridotites, nine Fe-rich dunites, one wehrlite, and one
glimmerite. Six garnet-bearing peridotites from Dawson et al,
(1996) are also included. Modal mineralogies are shown in Fig.
1 and reported in Table 1. Xenolith sizes range from 5 to 30 cm
in diameter and are mostly egg-shaped. Unlike kimberlite-hosted
xenoliths, which are often heavily serpentinized, the Labait
peridotite xenoliths are serpentine-free and generally fresh,
Residual peridotites are harzburgites or clinopyroxene-poor
lherzolites, and contain either hercynitic spinel, chromite, or
garnet. We have classified these peridotites into garnet and spinel
facies based on the presence of garnet or, in the absence of garnet,
on spinel and orthopyroxene chemistry and calculated tempera-
tures of equilibration. The Fe-rich dunites can contain Cr-diop-
side, chroruite, or both. Wehriites are also Fe-rich (LB15) and can
occur as cross-cutting planar dikes in composite xenoliths (e.g.
LB19). Only one glimmerite was collected. This sample consists
of fine~grained phlogopite grains with interstitial ilmenites.
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Figure 1. Modes calculated by least-squares regression of whole-rock
and mineral elemental analyses for Labait peridotites {garnet and spine]
normalized ouf), Garnet-free peridotites refer to peridotites containing
chromite and low AL, O; orthopyroxene and are distinct from true
spinel-facies peridotites,
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Table 1.
Modal Mineralogy*

OL CPX** OPX  SP PHL GT  Trace***
Garnet-Lherzolites
LB i2 0.1 7.0 153 76 Sf
LB 45 60.8 140 98 154
Garmet Harzbuzgites
LB 4 682 4.1 225 51 Sf
LB2 721 21 220 38
LB 24 769 10 176 45 §f
LB 234 882 11 82 26 Ph
ILB5G-1 728 25 203 44 Sf
1853 773 51 102 7.5 Sf
KAT17 720 35 241 0.4
GL4202 737 42 180 42
GL4203 752 1.8 189 4.1
GI4206 712 0.0 236 52
Garnet-free Peridotites
KAT 1 678 1.1 282 28
LB1 779 206 1.7 Sf, Ph
LB6 86.9 (2.22) 68 24 17 St
LB7 87.9 (0.68y 8.0 34 Sf, Ph
LB § 79.9 (0.54) 173 23 SI, Ph
LB 9 767 (7.03) 134 28 Im
LB 14 944 19 37 Ph
LB 16 784 13 194 09 Sf, Ph, Hm
1817 7500 1.1 217 4.5 Sr, Rt, Zr
LB 21 96.1 (3.94) i SE, Ph, Re, Pv
LB 22 e 15 182 27 Sf, Ph, Py
LB 23 796 15 171 43 Sf, Ph, R, Pv
LB 26 859 03 138 St, Py
LB 32 TS 31 182 1.2 Sf, Ph, Pv
LB 33 864 3.1 58 4.7 Sf, Ph, Rt, Pv
LB 36 739 (2.62y 219 16 Sf
LB 39 633 29 283 54
LB 40 79.4 194 12 IIm
LB 54 738 51 191 20 Sf, Ph
LB55 757 L6 199 2.7 Sf, Ph
LB 60 792 09 178 12 10 Sf, Ph
LB 6l 86.5 (0.63) 114 08 07
Spinel-facies Peridotites
1B 11 786 0.8 195 12 St
LB 29 78.4 203 14 Pv
LB 31 697 34 222 47 Sf
Fe-rich Dunites & Wehrlites
1B 15 548 452
LB 40 837 17 69 17 Om
LB 51 756 214 2.9
LB 58 923 54 23 Crbn, Nph
LB 59 93.9 4.1

* all modes have been normalized to 100 after least squares fitting

** Parentheses around secondary clinopyroxenes

*¥% 3rd column represents trace metasomatic phases not included in
caiculations
St=Sulfide; Rt=Rutile; Ph=Phlogopite; Zr=Zircon; Pv=Perovskite
Hm={lmenite; Nph=Nepheline; Crb=Carbonate; Hm=Harmatome

LB 4 =calculated using garnet from LB 12

LB 17 = pervasive veining giving rise to poor least square fits

LB 34 = calculated using garnet from LB 12

LB 39 = calculated assuming no phlogaopite

EB 50-1 = calculated using garnet from LB 12

GI/'s =data from Dawson er al. (1996)
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4. PETROGRAPHY

4.1 Olivine

Olivines are fresh and range from fine-grained and equant to
coarse-grained and tabular in shape. Undulose extinction due to
kink-banding is observed in many samples. Mosaic-porphyro-
clastic texture, reminiscent of Kaapvaal high temperature
sheared peridotites, is typical of the gamet-bearing and higher
temperature peridotites at Labait. In these xenoliths, there are
sometimes two textural generations of olivine., One generation is
characterized by small equant grains, which show varying
degrees of grain boundary recrystallization. The other generation
consists of larger olivine grains, which have a more tabular mer-
phology, perhaps formed by partial annealing {Mercier, 1985).
Olivine inclusions occasionally occur in gamet breakdown
patches. Similar inclusions have been observed in fresh garnets
irom the Lashainé xenolith site, located approximately 150 ki
northeast of Labait (Rudnick ef al., 1994).

4.2 Orthopyroxene

Orthopyroxenes occur as small to large groundmass grains and
also as products of garnet breakdown. Exsolution lamaliae are
confined to orthopyroxenes from spinel-facies xenoliths. Tn one
sample (LB17), orthopyroxene is more abundant in a late-stage
metasomatic vein that also includes zircon, rutile, phlogopite,
sulfides, and ilmenite.

4.3 Clinopyroxene

Clinopyroxene commonly ocours as a secondary phase, where it
rims chromite and orthopyroxene, in garnet breakdown patches,
and in metasomatic veins and patches. These clinopyroxenes are
characterised by small grain size and poorly developed mor-
phology, typically appearing as amorphous interstitial blebs.
Clinopyroxene also occurs as larger primary grains in wehrlites,

Fe-rich curmlates, and in garmet-bearing peridotites; these have
better developed morphology compared to secondary grains.

4.4 Garnet

Garnets occur as discrete, round grains. All garnets (except for
those in LB2} have a two-stage decomposition history based on
the occurrence of texturally distinct outer and inner breakdown
assemblages (Fig. 2a). The outer assemblage is coarser-grained
than the inner assemblage and resembles coronas developed
around garnets in crustal metamorphic rocks. These coronas
consist of equidimensional grains of symplectic pale-brown
spinel, orthopyroxene, and clinopyroxene (fine-grained) which
embay the surrounding groundmass olivines. Phlogopite and
sulfide occasionally occur as accessory phases (e.g. LB12, 34).
In most samples, the petrography and textures suggest the fol-
lowing reaction: gt + ol = opx + sp + cpx (Reid and Dawson,
1972; Smith, 1977, Jagues et al., 1990}, The occasional presence
of sulfide and phlogopite in some of the garnet coronas shows
that the process was not entirely isochemical.

The interiors of former garnets consist of very fine-grained
kelyphite encased by the outer corona assemblage (Fig. 2a, b).
Pristine garnet, if present, occurs at the center of these fine-
grained cores or as tiny grains distributed within the inner kely-
phite. In thin section, the inner kelyphife appears as an aphyric,
feathery-textured mass. In some samples, the aphyric mass is
composed of smaller, round subdomains with radiating fabric,
which are remarkably homogeneous in back-scattered electron
images, but which contain smatl amounts of Na, indicating that
the kelyphite formation was not entirely isochemical.

In the breakdown assemblages described above, no glass
was found. However, in LB2 theze are round to oval-shaped
patches consisting of clinopyroxene, orthopyroxene, glass
{fresh), and occasionally olivine. Clindpyroxene and glass are
the dominant phases, with clinopyroxene occurring as small
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Figure 2, (a) Photomicrograph of a partially decomposed garnet in LB12 (plane-polarized light). Note that the fresh garnet core (clear) is enclosed
by an outer coronal assemblage, consisting of ahuminous spisel, orthopyroxene, and clinopyroxene grains, which itself encloses an inner kelyphite
assemblage, characterized by a fine-grained aphyric mass. (b) Rastered probe analyses of the inner kelyphite assemblage versus that of the fresh
garnet. Symbeol in lower left comer is TiO,. Dotted Hnes represent 10% deviation from 1:1 (solid line).
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grains separated by thin glass films, resulting in a fishnet-like
texture. In some cases, clinopyroxene aggregates within a single
patch exhibit identical extinction. The glass and clinopyroxene
also embay or intrude into the olivine wallrock, imposing a
serrated appearance to the olivine grain boundaries. We interpret
these patches also as former garnets.

4.5 Chromite and Spinel

Chromite or spinel is observed in almost alt samples, with varia-
tions in composition and texture between samples. Chromite is
generally opaque while spinels tend to be reddish-brown.
Chromites are scarce in garnet-bearing peridotites, but alumi-
nous spinels occur in the garnet breakdown patches. In harzburg-
ites, chromite occurs as large, round blebs which form in the

interstices of the primary mineral assemblage or as inclusions in ...

olivine or orthopyroxene; these are presumed to be primary. The
latter occasionally induce radial fractures in their host mineral.
Chromites also occur as irregular, skeletal growths, which have
distinct “hetring-bone” textures, Many of the chromites appear to
be mantled by secondary mineral assemblages. In harzburgites,
some chromites have thin rims of rutile, which may have formed

by exsolution of Ti during cooling or by precipitation from a Ti-
rich metasomatic fluid (Bodinier er al., 1996). Late-stage
metasomatic selvages consisting of clinopyroxene, phlogopite,
and/or other phases may also mantle these primary chromites. In
one Fe-rich sample, LB58, plate-like chromites are mantled by
clinopyroxene, carhonate, glass, and other secondary minerals
{(Lee and Rudnick, 1998). Similar observations have been
reported from other xenolith suites and attributed to carbonatite-
metasomatism (e.g. Dautria er 4., 1992; Rudnick et al., 1993).

4.6 Phlogopite
Phlogopite occurs mostly as a secondary phase, associated with

‘metasomatic veins or patches but only rarely as a texturaily

primary phase. For example, in LB19C it occurs as large platy
graing within the groundmass olivine. In this particular speci-
men, small skeletal chromites are included within the phlogopites.

4.7 Other minerals

In several samples, sulfides occur in association with metasom-
atic and garnet breakdown patches and as tiny inclusions in
olivine or on grain boundaries. Other metasomaiic phases such
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Figure 3. (a) Orthopyroxene compositions plotted with field of spinel peridotites and Kaapvaal garnet peridotites. Note the three samples with high
ALOs (grey circles), which are true spinel-facies peridotites. Open diamonds represent kelyphitic orthopyroxenes associated with gamet breakdown.
(b} Mg# (=100 Mg/Mg+Fe) of pyroxenes in all samples plotted against forsterite content of coexisting olivines. Solid line represents 1:1
correspondence. Orthopyroxenes exhibit a tight correlation, whereas clinopyroxenes are highly scattered. Those that plot well-below the 1:1 ¥ine are
net in equilibrivm with the primary assemblage. Tieline connects two generations of clinopyroxene in one sample. (¢) (Garnet compositions
compared to fields of Kaapvaal garnet peridotites, inclusions in diamonds, and Lashaine garnet peridotites. Open diamonds represent compositions
measured from rastered probe analyses of fine-grained kelyphites in samples where fresh garnet is absent. (d) Chromite composition compared to
field of spinel peridotites and Kaapvaal garnet peridotites, Tielines connect two generations of chromite in the same sample.
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as iron oxide, rutile, zircon, nepheline, perovskite, calcium car-
bonate, and harmatome are observed in a few samples (Table 1).
They tend to associate with specific metasomatic mineral assem-
blages, whose petrography is described elsewhere (Chesley et
al., 1998; Dawson, this volume; Lee and Rudnick, 1998 and
unpublished data; Rudnick ef al, this volume).

5. MINERAL CHEMISTRY

Mineral analyses were performed at Harvard on a Camebax
MBX electron microprobe in wavelength dispersive mode using
15 kV and a 15 nA beam curent. Whole-rock major elements
were determined by X-ray fluorescence at the University of
Massachusetts, Amherst, on a Siemens MRS 400 MP simulta-
neous spectrometer,

5.1 Olivine

Olivines are unzoned and have forsterite contents ranging from
85.1 to 93.3, NiO ranging from 0.27 to (.42 wt. %, and Cr;0,
ranging from 0 to 0.10 wt. %. Compositions are generally homo-
geneous within a given sample. Exceptions are composite or
veined specimens, in which olivine compositions grade with dis-
tance from veins (LB17, 19), and olivine inclusions within
former garnet, which can be more forsteritic than groundmass
olivines (e.g. Foy, 4 in garnet and Fog, in groundmass of LB34).
Similar forsteritic olivine inclusions have been observed in
garnet xenocrysts in Colorado Plateau kimberlites and attributed
to partial reequilibration during cooling (Smith and Wilson, 1985).
However, the Tanzanian specimens have high equilibration tem-
peratures and are likely to have been heated (discussed later).
Thus the olivine inclusion probably represents an original
groundmass composition, which has remained shielded from
chemical change by the surrounding garnet. Rudnick ef al.
(1994) reported similar forsteritic olivine inclusions in garnet
from Lashaine peridotites.

In a few samples, late-stage olivine occurs as tiny euhedral
grains agsociated with patches of clinopyroxene and chromite
intergrowths or in metasomatic veins and patches. These olivines
are penerally more Mg-rich than the groundmass olivines. In
LB 6, for example, the groundmass olivine is Foy,; while the
euhedral grains are Foge. In these tiny euhedral olivines NiQ is
anomalously low, as evinced by lower NiO/MgO (<0.0070),
compared to primary olivines (NiO/MgQO = 0.0076 + 0.00035).

5.2 Orthopyroxene

Orthopyroxenes are mostly unzoned, but in a few samples they
are slightly enriched in Ca0Q (>1.0 %) on the rims, suggesting
heating. Cr,0O, ranges from 0.21 to (.81 wt. % and correlates
roughly with AL, (Table 2). CaO ranges from near detection
Limit to 1.8 wt. % and exhibits a rough negative correlation with
Mg# (100 Mg/Mg+Fe) and positive correlation with AL,O,
{Fig. 3a, b). Most of the orthopyroxenes have ALO, < 2.0 wt.%,
which is within the range observed for orthopyroxenes in
Kaapvaal low temperature garnet peridotites, but distinct from
those in spinel peridotites from alkali basalts (Boyd, 1989b).
Low ALQ, orthopyroxene is indicative of high pressure sub-
solidus assemblages (Yamada and Takahashi, 1984), and these
rocks probably equilibrated at pressures greater than 30 kbar,
within the garnet-facies, even though the samples do not contain
garnet, The three samples that have high Al-orthopyroxene also
contain hercynitic spinef and are interpreted as the only true
spinel-facies peridotites in our collection (Table 2). Mg# of
orthopyroxene correlates well with Fo in olivine, as expected in
an equijlibrium assemblage {Fig. 3b).

Orthopyroxenes in garnet kelyphites and coronas have
higher CaQ and AL, and lower Mg# than primary orthopyrox-
enes. In LB4, corona orthopyroxenes have ALO, of 11,54 wt.%.
Except for these, secondary orthopyroxenes are rare but occur
occasionally in metasomatic veins. In LB17, for example, secon-
dary orthopyroxene is associated with zircon, phiogopite, rutile,
and sulfide, and is more Fe-rich than the primary orthopyroxene.

5.3 Clinopyroxene
Clinopyroxene in Labait xenoliths is compositionally variable
{Table 2}. In most samples, clinopyroxene appears to be secon-
dary, based on its small grain size and on its tendency o be
found between mineral grains, rimming other minerals such as
chromite and orthopyroxene, or forming aggregate patches.
Medium-sized clinopyroxene grains concentrated in metaso-
matic veins, dikes, or patches are typically cloudy and have
higher CaO than the small secondary ones. Only in gamet-
bearing samples are large primary clinopyroxene grains
observed. These have lower CaO (<20 wt. %) than secondary
clinopyroxenes (>20 wt. %) and generally have turbid rims,
which sometimes differ in composition from the cores. For
example, in LB 45, a garnet therzoiite, the cores of the chno-
pyroxenes have lower CaO (by ~2 wt. %) than the turbid rims,
Zoning of other elements is also prevalent; in some samples,
Mg# and Na,O are lower on the rims, consistent with the results
of Dawson et al. (1996). They also noted that ALO, is generally
lower on the rims, but this is not always trze in our samples.
‘When Mg# of clinopyroxene is plotted against Fo in olivine
for all samples there is a considerable amount of scatter, unlike
the tight correlation seen for orthopyroxene (Fig. 3b). Texturally
secondary clinopyroxenes have lower Mg# than Fo of coexisting
olivines, which is opposite to what is expected for an equilibrium
assemblage. In contrast, large clinopyroxene grains in the matrix
generally have Mg#'s that are the same or slightly higher than
that of coexisting olivines.

5.4 Garnet

Garnet or its breakdown products are present in 8 of our samples,
and in an additional six, reported by Dawson ef al. (1996). All
garnets are pyropic, with CaO between 3.72 to 6.73 wt. % and
Cr,Q from 3.46 to 7.34 wt. % (Fig. 3¢); these gamnets fall within
the field of garnets from Kaapvaal garnet Therzokites. We have
not observed subcalcic garnet compaositions at Labait (CaO <4.0
wt. %), as is present at Eashaine (Pike ef al,, 1980; Rudnick ef
al, 1994).

Compositions of fine-grained inner kelyphite assemblages
estimated by rastered probe analyses indicate slight loss of CaQ
and Ti0O, and gain of Na,O, but are otherwise very similar to
fresh garnet (e.g. LB12, 53) (Fig. 2b). The garnet cores thus
appear to have undergone near isochemical decomposition.
Formation of the outer corona assemblage undoubtedly involved
heating and chemical exchange (e.g. Fe-enrichment {{L.B34), and
sulfide and phicgopite addition (LB 12)). Temperatures calcula-
ted using the Ca-in-orthopyroxene coexisting with clinopyroxene
barometer {Brey and Kd&hler, 1990) indicate that the corona
assembiages formed at higher temperatures. For example, in
1B45 the symplectic orthopyroxene yields a temperature of
1474 °C while the groundmass orthopyroxene yields a tempera-
ture of 1382 °C (using the same thermometer). We thus infer that
transient heating aided in the decomposition of garnet to form the
outer corona. The fine-grained kelyphitic core is likely to be a
result of decompression during entrainment by the erupting lava
because of the aphyric texture and isochemical nature of the
decomposition; the texture suggests that the process was rapid.
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Si0,

‘Gamet Lherzolites

43.64
43.28

Carnet Harzburgites

43.4%
4464
43.21
41.09
43,75
43.76
42,57
44.80
42.67
44.67
43.71
4439

i Gamet—frce Peridotites

45.54
43.83
41.43
40.84
42.83
41.97
4128
42.89
A44.23
41.57
4223
40.75
43.09
4248
41.97
43.51
42.00
43.56
44.23
4323
43.21
43.00
43.28
42.24

43.07
42.89
43.69

45.80
39.54
39.88
40.69
42.15
38,71
39.06
39.36

TiO,

0.05
.20

.06
0.03
0.06
.17
0.05
0.05
0.12
0.06
0.i2
0.03
.02
0.03

0.106
0.08
.12
0.11
0.05
0.06
0.08
0.12
0.24
0.10
0.08
0.0
0.07
003
0.13
.09
0.33
0.06
0.14
0.05
0.17
0.08
0.14
0.09

‘| Spinel-facies Peridotites

0.04
0.06
0.04

0.25
0.25
0.10
0.22
G.31
0.10
0.09
5339

Fable 3. Whole-rock Major Element Chemistry.

ALO;

1.98
3.80

138
1.54

- 121

0.68
1.37
1.32
1.73
0.41
L.06
121
1.12
1.30

0.65
0.40
0.65
0.55
0.34
0.36
0.33
0.60
0.56
(.42
0.82
0.30
0.67
Q.54
0.45
0.60
0.60
0.88
0.86
0.52
113
0.76
0.50
0.50

0.84
(.88
1.02

1.23
0.84
0.26
0.51
1.12
0.52
0.27
12.56

FeO(t)

8.34
8.34

6.59
135
6.52
9.28
779
772
7.93
10.55
9.10
7.91
7.93
7.86

7.04
6.38
7.38
7.50
6.40
6.50
715
721
7.41
8.31
8.51
6.52
744
7.22
7.07
6.61
7.31
6.95
773
7.03
7.50
6.79
6,78
7.00

7.18
7.10
1.30

8.63
12.88
11.86
11.22
11.25
i0.50
14.10

8.32

MnO

0,15
0.15

0.13
0.14
0,12
0.14
0.14
0.14
0.14

0.13 7

0.13
0.12
0.12
0.i3

0.109
0.12
0.13
0.13
0.11
0.12
0.12
6.13
0.14
0.13
0.15
0.12
4.13
0.13
0.13
0.12
0.13
0.13
0.14
0.13
0.14
0.13
0.i3
0.13

0.13
0.13
0.14

0.16
0.18
0.17
0.16
0.16
0.18
.18
0.05

MgO

42.10
38.67

45.94
43.30
45.68
4578
Ad.16
44.07
43.89
43.28
44.87
44.62
4498
44.20

45.97
47.34
47.67
47.98
47.38
47.45
48.88
46.29
44.85
47.15
45.76
48.85
45.93
47.34
47.01
46.7T7
46.54
4536
44,04
47.02
44.29
46.12
46.56
47.68

46.37
46.52
45.25

32.36
43.15
45.719
43.21
3948
45.05
43,70
21.13

CaO

1.79
2.74

0.50

1.06

0.61
0.43
0.98
0.95
1.34
0.64
1.15
1.01
0.96
0.83

0.39
0.25
0.56
0.28
0.18
022
0.04
0.40
0.42
0.38
0.46
0.52
0.39
0.41
0.18
0.26
0.69
a.61
072
0.23
1.26
041
0.28
0.23

0.30
0.30
0.96

8.38
0.21
0.13
1.56
3.37
0.83
0.09
0.32

Na, 0

0.02
0.11

0.00
0.00
0.00
0.060
0.00
0.00
0.00
0.09
0.16
0.05
0.01
.02

0.07
0.00
0.60
0.00
0.00
0.00
0.00
0.00
0.00
0.00
¢.00
0.00
0.00
0.00
0.00
0.00
.00
0.00
0.00
(.00
0407
0.00
0.00
0.00

0.00
0.00
0.00

0.84
0.00
0.00
0.00
0.18
0.00
6.00
0.42

K0

0.08
0.08

0.12
0.03
0.05
0.09
0.03
.02
0.04
0.02
0.06
0.06
0.06
(.06

0.09
0.04
0.15
.13
0.05
0.05
0.07
0.7
0.07
0.06
.25
0.08
0.06
0.06
0.06
0.10
.14
0.13
0.15
0.03
0.24
0.22
0.08
0.09

0.04
0.66
0.08

0.07
0.50
0.07
0.06
0.20
0.09
0.13
9,68

PO

0.02
0.02

0.02
0.01
0.01
0.01

0.0l
0.01
0.01
0.02

0
0.01
0.01
0.02

(.042
0.02
.04
0.02
0.01
0.02
0.01
0.03
.02
0.01
0.01
0.03

002 .

0.03
0.01
.03
0.01
0.03
0.03
0.00
0.04
0.02
0.02
0.02

0.00
(.01
0.0t

0.01
0.01
0.01
0.01
0.05
0.01
0.02
0.064

Total

98.13
97.48

98.02
98.30
97.87
97.69
08.28
98.04
971.75
100.00
99.33
99.09
98.92
98.86

100.0%
98.43
98.13
97.53
97.36
96.74
97.95
97.74
97.93
98.13
98.26
97.26
97.79
98.24
97.02
98.07
97.76
9171
98.04
98.24
98.04
91.53
97.77
97.98

97.97
97.96
98.48

97.73
97.53
98.27
97.65
98.27
97.00
97.68
97.25

Mg#

90.00
89.21

92.55
91.09
92.17
89.79
91.00
91.05
90.80
87.97
89.79
90.96
91.00
50.94

92.09
92,98
92.01
91.94
92.96
92.86
92.42
91.96
91.52
91.01
90.55
93.04
91.67
92,12
92.22
92.66
91.50
92.09
91.04
92.26
91.32
92.37
9245
92.40

92.00
92.11
91.70

86,99
85.66
8731
87.29
86.22
88.44
84.70
81.91

: ' ¥LB 50-1 was leached with acetic acid and LB 30-2 was leached with both acetic and dilute hydrochloric acid. Tirom Dawson ef al. (1996)




Garnets in LB2 appear to have incongruently melted to an
assemblage consisting of clinopyroxene, orthopyroxene, spinel,
glass, and occasionally olivine. Hunter and Taylor (1982)
described similar symplectic assemblages and also explained
their origin by incongruent melting. Primary orthopyroxenes in
LB2 have Al- and Ca-rich rims, suggesting that this xenolith
was heated.

5.5 Chromite/Spinel

Chromite or spinel occurs in nearly afl samples (Table 2,
Fig. 3d). Three deep red hercynitic spinels (LB 11, 29, 31) with
Tow Cr# <50 (100 Cr/Cr+Al) are typical of those found in spinel
peridotites in alkali basalts (Fig. 3d). Because these spinels
coexist with aluminous orthopyroxenes, these xenoliths are

presumed to represent the few true spinel-facies peridotites in
our collection. Spinel in LB 36 also have low Cr# and are deep
red in color, however the aluminum content of coexisting otho-
pyroxenes is low. Spinels precipitated during garnet breakdown
tend to have ultra-low Cr#'s. The remaining chromite/spinel in
Labait samples are opaque and have high Cr# (-60), overlapping
the compositional range for chromites in gamet peridotites from
Kaapvaal. In some gamet-free harzburgites, two generations of
chronnite or spinel occur {(Fig. 3d).

Chromites are absent in the garnet-bearing peridotites at
Labait (which only have secondary low Cr# spinel). The high Cr
content of spinels may depress the garnet-spinel transition
(O’ Neill, 1981). For Cr# of ~70, the garnet-spinel transition is
depressed to approximately 3.6 GPa, which coincides approxi-
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Figure 4. (a) (b} () Whole-rock Ca0, Al,Q,, and FeO (=FeO+Fe,0;) versus MgO, compared to Kaapvaal garnet peridotites. Partial melting curves
for residues from Asimow (1998; solid lines) and Walter (1998b; dashed line). The former represent residues of polybaric batch melting calculated
using MELTS and assuming 2 mantle potential temperature whose adiabat intersects the solidus at 2.5 GPa. The latter represents residues of isobaric
batch melting at 7 GPa. Range of primitive mantle values taken from McDonough and Sun (1995) and Allegre ef al. (1995). Note that three samples
(KAT 17, LB34, and GL4201) show Fe-enrichment but no enrichment in CaQ and ALO,. (d) (e) (f) Whole-rock Ca0, ALO,, and FeO versus
temperature. Temperatures calculated from two-pyroxene thermometer (Brey and Kohler, 1990). Arrows in (f) show direction of Fe-enrichment.
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- T (Celsins) P (GPa) T (Celsius) T (Celsivs)
- Garnet present No Garnet

T Ca-in-Opx cominents

St yBKN PBRN  TBEN
 Garnet Lherzolites

4.4 1239

B2 44

LB45* 47 1382
(LB-A5% 1462 gt breakdown

" Garriet Harzburgites
KAT-17 1245 X 923
‘LB 1132 (3.5) 926 core
1054 rim
1336 . 872 matrix
1302 gt breakdown
1265 . 1182 v
1269 . 1190
1115 . 1141
1359 . 1313
1298 . 1257
1297 X
1260 . 1186
1381 (4.5) 153¢ gt breakdown
1270 . 1332
1363 (4.5) 1407 gt breakdown
1330
1350 49 1329
1330 (4.5) 1429 gt breakdown
1290 4.6 1340
1240 4.3 1231

_Ga’met—free Peridotites

| LB-14 900 (4.5) 993

1260 (4.5) 1100
1070 (4.5) 1074
1120 (4.5) 1107
1200 (4.5) 962
1000 (4.5) 999
1040 (4.5) 1044
1060 (4.5} 966
1110 {4.5) 1121
1230 (4.5) 919
1200 (4.5) 1065
980 (4.5) 854
1220 (4.5) 1036
1150

“|' Spinel-Facies Peridotites

LB-11 990 (2.5) 991
LB-29 990 (2.5) 990
LB31 1050 (2.5) 1056

Fe-rich dunite
LB-46 1150 (4.5) 1149

First two columns are for garnet-bearing samples.
. Third column is T calculated for gamet-free saumples; input P

parenthesized.

- Fourth column is temperatuzes calculated using Ca in orthopyroxene.
: TBEKN = two pyroxene thermometer of Brey and Kohler (1990).
" PBKN = Al solubility in orthopyroxene coexisting with garnet

barometer of Brey and Kohler {(1990).

" F Ca-in-Opx = Ca0 in orthopyroxene thermometer of Brey and Kohler

(1990); input P=4.5 GPa.

_ ¥ Garnet composition using 800 V raster and 125 micrometer spot size

to probe kelyphite.

: " Samples with GL-prefix are from Dawson et al. (1997).

mately with the equilibration pressure calculated for our
shallowest garnet-bearing peridotite (3.7 GPa for LB 34).

5.6 Phlogopite )

Phlogopite occurs in several samples as tiny lathes on grain
boundaries, in veins, or in metasomatic patches of clinopyroxene
and chromite (Table 2). Only in LB19, the composite xenolith,
does phlogopite occur as large platy grains in textural equili-
brium with the primary miners] assemblage. Phlogopite Mg#
ranges from 84.0 to 93.3 for all samples. TiO, ranges from 3.63
to 7.89 wit. % except for LB19R (depleted portion of LB19)
which has TiO, of 1.12 wt. %. Erlank et al. (1987) report that
primary phlogopites from Kaapvaal garnet peridotites do not

- exceed 4.86 wt.% TiO,, so most of the phlogopites reported here

may be secondary.

“We also analyzed the phlogopites which make up LB49, a
ghimmerite xenolith. These phlogopites have compositions
within the range observed for the Labait phiogopites, suggesting
a connection between the glimmerite and the phlogopites in
Labait xenoliths.

Interestingly, two generations of pblogopite may occur
within one xenolith. The texturally equilibrated phlogopites in
LB19 exhibit compositional variation between the Fe-rich vein
and depleted portions of the xenclith, The vein phiogopite has
.63 wt. % Ti0, and Mg# of 89.3, while the depleted portion has
1.12 wt. % Ti0, and Mg# of 93.1, In LB34, phlogopites in garnet
breakdown patches have higher Fe and Ti and lower Mg
compared to those found as interstitial lathes in the primary
groundmass.

6. MAJOR ELEMENT COMPOSITION

Whole-rock major-element compositions are presented in
Table 3. Por residual peridotites, Mg# is generally high (89 to 93
with most > 91) and similar to those of Kaapvaal peridotites
(Mg# = 90-92; Boyd, 1989a). Garnet-bearing peridotites tend to
have lower Mg# and Mg/Si than garnet-free peridotites. As
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Figure 5. Pressure-temperature estimates of Labait garnet-bearing
peridotites calculated from the Al-in-orthopyroxene barometer and
two-pyroxene thermometer of Brey and Kohler (1990}, Open diamonds
represent P-T estimates determined by astag the composition of fine-
grained garnet kelyphites for those garmet-bearing peridotites in which
fresh garnet is absent, Stars represent data from Lashaine garnet
peridatites (Rudnick ez al, 1994; Rudnick et el., unpublished),
Histogram in upper left corner denotes temperature estimates for
garnet-free peridotites (solid) and spinel peridotites (open). Geotherms
taken from Rudnick et al. {1998), calcalated assuming lithospheric
mantle and crustal heat prodactions of 0.03 and .5 pW/m', respec-
tively. Adiabatic temperature profile is for a 0.6°C/km gradient and a
1200°C potential temperature. ’




shown in Fig. 4a-c, Labait peridotites plot within the field of
Kaapvaal garnet peridotites, but differ by having a more
restricted range in compositions, which are highly refractory.
The refractory character of Labait xenoliths is also reflected in
the general absence of primary clinopyroxene and gamet. The
spinel-facies peridotites (LB11, 29, 31) are highly refractory
{Fig. 4a-c) in comparison to the average spinel peridotite
reported by McDonough (1990) and more closely resemble
spinel facies peridotites from Kaapvaal and Siberian cratons
(Boyd, 1989a; Boyd ef al., 1997). Garnet-bearing peridotites are
the most fertile of the residual peridotites in our collection, but
are still considerably more refractory than the primitive mantle
estimates. Orly one sample (LB43) has a composition approach-
ing primitive mantle.

In element-element plots, most xencliths plot on coherent
trends, which trend toward primitive mantle (Fig. 4a-c} and can
therefore be explained as partial melting trends, However, some
samples (KAT17, L.B34, and GLA201, the latter from Dawson et
al. (1996)} have higher FeO than primitive mantle (Fig. 4¢), yet
display refractory characteristics such as low CaO and AlLO;;
these samples therefore plot off the trend in FeO-MgO space, but
plot close to or on the trend in CaO and Al O, versus MgO space.
One of these, LB 34, a garnet-bearing peridotite, has FeO of 5.28
wt. % (Mg#= 89.8) and contains a forsteritic olivine inclusion in
arelict garnet (see previous sections) suggesting that this sample
has been re-enriched in Fe. These observations suggest that local
Fe-enrichment has been superimposed on the overall composi-
tional trends exhibited by our xenoliths. As will be discussed
below, the compositional trends correlate well with depth, so the
few TFe-enriched samples represent minor perturbations to the
compositional stratigraphy.

7. THERMAL STATE AND THICKNESS OF
CRATONIC MANTLE

Pressures and temperatures of equilibration for garnet-bearing
samples were calculated using the aluminum-in-orthopyroxene
coexisting with garnet barometer (PBKN) and the two-pyroxene
thermometer (TBKN) (Brey and Kéhler, 1990) assuming no Fe*
(Table 4, Fig, 5). Only four of our samples (KAT 17, LB 12, 24,
53) have relict garnet. Raster apalyses on the fine-grained inner
kelyphite assemblages were used to calculate P/T for those
samples without relict garnet. The P/Ts calculated for fresh and
altered garnet are indistiguishable to within error. For garnet-free
samples, temperatures were calculated using TBKN and by
assuming an input pressure of 4.5 GPa for most samples (2.5
(GPa was assumed for spinel peridotites). Clinopyroxene-ortho-
pyroxene temperatures were calculated only for pyroxenes
believed to be in equilibrium (see Fig. 3b, Table 4).

Dawson et al. (1997) showed that pyroxenes in the garnet
coronas record higher temperatures (reflected in high CaO and
ALO,), suggesting that the breakdown of garnet may have been
enhanced by heating, Because the coronal clinopyroxenes were
often too small to analyze, we calculated the temperature of the
coronal assemblages using the amount of Ca in orthopyroxene as
a thermometer, which is based on the narrowing of the pyroxene
solvus with increasing temperature (Brey and Kdhler, 1990).
For internal consistency, we simultaneously calculated the
temperatures of the groundmass orthopyroxenes by this method.
Although the absolute temperatures estimated using this ther-
mometer are uncertain, the relative temperature difference is
likely to be robust. A 163-200 °C heating is implied by cur calcu-
lations. The presence of higher CaO rims on some primary
orthopyroxenes in Labait samples also suggests heating.

As shown in Fig. 5, cratonic mantle presently exists to depths
of at least 150 km beneath Labait. The Labait peridotites plot
above the 4] mW/m’ geotherm denoted by Kaapvaal low tem-
perature garnet peridotites and also appear somewhat hotter than
Lashaine peridotites which show a large scatter; the Labait peri-
dotites follow a 50 mW/m? geotherm. The Tanzanian craton is
characterized by low surface heat flow (23-47 mW/ny’) (Nyblade
et al.,, 1990), which is inconsistent with the elevated temperatures
recorded by the Labait xenoliths. These temperatures may
represent recent thermal effects due to heating from the East
African Rift magmas, which are not yet reflected in the surface
heat flow.

8. DISCUSSION

8.1 Comparison to Kaapvaaal

Based on petrochemical studies of the Siberian and South
African cratons, it is believed that cratonic mantle is highly
refractory and variably enriched in silica; the latter is manifested
in the orthopyroxene-rich character of Kaapvaal (Boyd, 1989%a)
and Udachnaya peridotites (Boyd et al., 1997). Like other cra-
tonic mantle, the Tanzanian mantle is also refractory and slightly
silica~enriched (Fig. 6). The degree of Si-enrichment, however, is
not as large as beneath Kaapvaal (Boyd, 1989a), and more
closely resembles the enrichment seen in Siberian peridotites
(Boyd ef al., 1997). Lashaine peridotites also show moderate
silica-enrichment (Rudnick et al,, 1994). Interestingly, most of
the Labait garnet-bearing peridotites plot closer to the “oceanic
trend” and hence show no silica-enrichment. A discussion of the
many models proposed to explain silica-enrichment is beyond
the scope of this paper. However, we note that peridotites from
Somerset Island on the Canadian craton have turned out o be
orthopyroxene poor (Schmidberger and Francis, 1997} as well as
peridotites from East Greenland (Bernstein et al.,, 1998). Clearly,

the pattern of silica-enrichement in cratonic mantle is complex, and

Kaapvaal appears to be one end-member of a spectrum.

8.2 Compositional stratification and implications for the
origin and stability of eratonic mantle

The most important finding of this study is that the Tanzanian

lithosphere, at least beneath Labait, is compositionally stratified.

Indices of fertility, such as FeO, Ca0, Al,O,, and modal clino-

pyroxene correlate positively with temperature (Fig. 4d-f). Ni
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Figure 6. Forsterife content of olivine versus modal olivine, Kaapvaal
field and oceanic trend taken from Boyd (1989). Lashaine data taken
from Rudnick et al. (1994),
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'('Lee and Rudnick, unpublished data), modal olivine, and Mg/Si

" goprelate negatively with temperature. Fertility increases in a
“step-wise fashion with depth (Fig. 4d-f). As discussed eazlier, a
" few samples bear evidence for Fe-enrichment; these samples
i répresent smali perturbations to the overall compositional strati-
“igraphy of the mantle section (Fig. 4f).

- The origin of this compositional stratification is unclear. If

“'the stratification is a primary feature, then it represents a down-
“ward decrease in the degree of partial melting, as would be
" expected for an adiabatic melting column such as in a rising
- plume. If so, then the compositional trends shown in Fig. 4 are
““Telated to partial melting. We found that the model melting

curves of Asimow (1998) provided the best-fit to our data (Fig.

- 4), These residue curves are for relatively low pressure, polybaric ~
% hatch melting (assuming beginning of melting at 2.5 GPa),

which approximates equilibrium porous flow (Asimow, 1998).
Considerable deviation from this model, however, is seen for

" FeO versus MgO (Fig. 4c), which we attribute (o the pressure
: gensitivity of FeO and to the fact that most of the Tanzanian
:. petidotites probably formed at greater pressures than the model

;s calculated for, Batch melting at 7 GPa (Walter, 1998a and b)

apparently depletes the residue of FeO more effectively than
melting at lower pressures, which is typical of mid-ocean ridge
basalt genesis. Regardless of which melting model is chosen, itis
clear that our samples are ultra-refractory, having had 30 to 50 %
melt extracted from them.

In a companion stady (Chesley ef al,, 1998), it was shown
that spinel-facies peridotites and garnet-free peridetites record
approximately the same Re depletion cvent (~2.8 Ga). Because
the gamet-free peridotites are believed to have equilibrated at
greater depths, the coincident ages suggest that the lithospheric
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Figure 7, Densitics of Labait xenoliths at standard temperature and
pressure conditions. Pressurcs for garnet-free peridotites estimated
from their equilibration temperatutes and by assuming a conductive
geotherm. Isopyenic curves for various lithospheric geotherms
calculated using an asthenosphere with potential temperatures of
1300 *C {solid lines) and 1400 °C (dashed line), an adiabatic
temperature gradient of 0.5 °C/km, a constant thermal expansivity of
2.7 x 109K, and a density of 3.390 g/fcm?®, Lithospheric geotherm
models are [rom Rudaick et al. (1998). Densities that lic below
isopycnic ines represent stable conditions. Range of densities for Fe-
rich dunites and wehrlites at STP are shown by the gray bar.

mantle down to depths of ~120 km beneath Labait may have
formed during one melting event. However, most of the gamet-
bearing peridotites, which ate the deepest xenoliths, have
younger Re depletion ages. This may reflect their formation
from a more recent partial melting event during the Proterozoic
or overprinting of the deepest lithosphere (Chesley ef al., 1998).

The downward increase in fertility is equivalent to an
increase in intrinsic density. We calculated densities using pub-
lished densities of mineral end-members, their proportions, and
modes. We obtained an average density for the residual perido-
tites of 3.327 g/cm® with deeper, garnet-bearing, samples having
densities up to 3.350. For compatison, the average density of
Kaapvaal garmnet Therzolites is estimated to be 3.353 (Jordan,
1978), identical to that of the deepest portion of the Tanzanian
lithosphere. This density is believed to be enough to counteract
the negative buoyancy imposed by the cooler thermal state of
cratonic mantle according to Jordan’s isopyenic hypothesis
(1978). We have illustrated this concept graphically in Fig.7.In
order to maintain stability, the density of the cratonic mantle at
every levei should be less than or equal to that of the surrounding
asthenospheric mantle. In Fig. 7, isopycnic curves, representing
neutral buoyancy, are shown with densities of residnal peridotites
at standard temperature and pressure conditions. These curves
were calculated for different lithospheric thermal states and for
an asthenosphere with a potential temperature of 1300 and 1400
°C, an adiabatic temperature gradient of 0.5 °C/km, and an
intrinsic density of 3.390 gfem®, Pressures for garnet-free
samples have been inferred from equilibration temperatures and
a conductive geotherm. It is clear that the residual peridotites
from the Tanzanian mantle are dynamically stable at all levels,
hence confirming Jordan’s isopycnic hypothesis. The occurrence
of Archean and Proterozoic mantle beneath Labait as deduced
from Re-Os isotope studies (Chesley et al., 1998) attests to the
preservation of cratonic mantle despite proximity to rifting. A
recent seismic tomographic study has shown that fast shear-
wave znomalies extend to depths in excess of 250 km beneath
the center of the Tanzanian craton and to depths of ~150-200 km
beneath Labait {(Ritsema et al., 1998), consistent with the obser-
vation that the Tanzanian cratonic mantle persists, despite prox-
imity to rifting.

8.3 The effects of rifting on cratonic mantle
Although this and a companion study (Chesley et al, 1998) have
shown that the Tanzanian lithosphere has remained intact since
the Precambrian, it has not remained unmodified. Interaction
with asthenospheric melts has led to an increase in density of the
mantle section by local Fe-enrichment and by formation of Fe-
rich dunites. Local Fe-enrichment is geochemically manifested
as perturbations to the overall trend of increasing fertility with
depth (Fig. 4f), and petrologically manifested in racks that have
low whaole-rock Mg# but which have an otherwise depleted corn-
position (low Ca and Al contents). Addition of Fe-rich materials
is evidenced by the fact that 75% of the xenclith suite is com-
posed of Fe-rich dunites. It is unclear whether these Fe-rich
dunites are the fractional crystallization products of a melt or
whether they are products of melt-rock reaction, The fact that
most of these have Os and Ni contents similar to residual perido-
tites {Chesley et al., 1998; Lee and Rudnick, unpublished data)
favours the latter hypothesis. Many of the Fe-rich dunites are
probably related to Cenozeic rifting, but it is possible that some
are related to much older events. Future Re-Os work on Fe-rich
samples will shed light on this matter.

The formation of Fe-rich dumites is likely to be the dominant
mechanism for increasing the overall density at a given depth.




Their range of densities are shown in Fig. 7. Fe-rich dunites are
0.6 to 3 % denser than residual peridotites. Given the range in
densities, a minimurn of 25 % addition of Fe-rich dunites via
dikes or veins s required for a layer of the mantle to becoms
negatively buoyant. Considering that Fe-rich dunites make up
75 % of the xenoliths in the field, it is possible that the above
threshold will or has been met. Therefore, we speculate that as
the base of the mantle section beneath Tanzania continues to
interact with rift-related magmas, generating dense Fe-rich
dunites, it will eventually become negatively buoyant and delam-
inate, aiding in the mechanical thinning of the lithosphere. The
presence of low seismic shear wave velocities af depths >150 km
beneath Labait suggests that the effects of rifting are currently
propagating into the craton’s margin (Ritsema et al., 1998),
These low seismic velocities may be manifestations of elevated
temperatures and/or the presence of dense Fe-rich bodies.

9. SUMMARY

1) Tanzanian cratonic manile extends to depths of at least 150
km beneath the Labait voleano in the Tanzanian section of
the East African Rift. Re-Os systematics indicate that the
upper 120 km formed during the Archean while the lower-
most lithospheric section was either overprinted or formed
during the Proterozoic (Chesley et al,, 1998).

2} Tanzanian cratonic mantle is compositionally stratified, with
a step-wise increase in fertility with depth.

3) Density calculations indicate that the residual peridotites
satisly the isopycnic hypothesis and are thus dynamically
stable with respect to the asthenosphere. This interpretation
is supported by the preservation of Archean and Proterozoic
Re-Os depletion ages beneath Labait,
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4) Xenoliths record elevated temperatures at depth, and some
samples have experienced Fe-enrichment. Thus the mantle
section has been chemically and thermally modified. Some
of these modifications are due to Cenozoic rifting and some
may be older.

5) Fe-rich peridotites make up 75% of the xenolith suite in the
field, and are much denser than the residual peridotites. The
contribution of Fe-rich dunites via dikes, veins, or reaction
zones 10 layers of residual peridotite may eventually impose
negative buoyancy, causing such layers to delaminate.
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