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Continents are underlain by thick, cold thermal boundary layers. Thermal contraction should render 
these boundary layers negatively buoyant and unstable; this is why old, cold oceanic lithospheres 
subduct. However, the ancient lithospheric roots of many continents appear to have existed for billions 
of years. In the common view, this preservation is due to the fact that the thermal boundary layers are 
compositionally distinct from the ambient mantle in that they are highly melt-depleted and dehydrated; 
the former provides positive buoyancy and the latter provides strength. Here, we show using mantle 
xenoliths that the Precambrian South China Block originally was underlain by highly depleted mantle, 
but has been refertilized via silicate melts generated from the asthenosphere. It is now more fertile than 
the ambient convecting mantle and is intrinsically denser by more than 1.5%. Achieving sufficient melt 
generation for refertilization is only possible if the lithosphere is thin enough to provide “headspace” for 
decompression melting. Thus, continental boundary layers thinner than the maximum depth of melting 
should experience refertilization, whereas thicker continents would altogether suppress melting and 
hence the potential for refertilization. We propose that refertilization, once initiated, will destabilize 
the base of the continent; this in turn will increase the amount of “headspace” and promote further 
refertilization, resulting in a positive feedback that could culminate in lithospheric destruction. By 
contrast, continents that are thick enough may not experience significant refertilization. This suggests 
that initial lithospheric thickness, as well as lithospheric composition, may be important for defining the 
fate of continents.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The longevity of cratons is generally attributed to the highly 
melt-depleted lithospheric mantle that underlies the crust, provid-
ing a compositional buoyancy that compensates for the thermal 
contraction associated with the cooler thermal state of lithospheric 
mantle compared to the ambient convecting mantle (Jordan, 1978;
Kelly et al., 2003). Such high degrees of melt-depletion requires 
unusually high temperatures, probably only achieved during the 
Archean and early Proterozoic when the mantle potential tem-
perature was higher (Griffin et al., 2009; Herzberg and Rudnick, 
2012). Although this might imply that all continental lithospheres 
formed during the Archean and early Proterozoic were highly melt-
depleted and hence, destined for survival, there are some Archean 
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to Proterozoic continental blocks, such as the North China Cra-
ton (Fig. 1a, Data Repository), the South China Block (e.g., Xu 
et al., 1998, 2002; Zheng et al., 2004; Liu et al., 2012a, 2012b; 
Lu et al., 2013), the North Atlantic Craton (Wittig et al., 2010;
Hughes et al., 2014) and the Wyoming Craton (Carlson et al., 2004;
Kusky et al., 2014), which have undergone significant Phanero-
zoic destruction. Why are these particular regions currently be-
ing destabilized, whereas other cratons have remained quiescent? 
Answering these questions is critical to understanding whether 
the present age distribution of continents reflects the tempo of 
continent formation or, instead, represents only what is left af-
ter destruction. The purpose of this study is to evaluate whether 
unstable continents are unstable because they do not have the nec-
essary compositional characteristics for longevity or if additional 
factors must also be considered. To better understand how cra-
tons are destabilized, we investigated the compositional and ther-
mal structure of the lithospheric mantle beneath the South China 
Block.
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Fig. 1. (a) Map of Phanerozoic magmatic activity in eastern China. (b) Peridotite xenolith localities in the South China Block. Symbols in (a): T, J, J-K and K, is Triassic, 
Jurassic, Jurassic–Cretaceous (undivided) and Cretaceous, respectively. Uncolored parts represent areas without Phanerozoic magmatic activity. NSGL is the North–South 
Gravity Lineament, which corresponds to a transition from thick crust and lithosphere with low surface heat flow in the west to thin crust and lithosphere with high surface 
heat flow in the east. In (b): JS-PYFZ is the Jiangshan–Shaoxing and Pingxiang–Yushan translithospheric fault zone, which represents a Neoproterozoic suture separating the 
Yangtze Craton from the Cathaysia Block. Symbols are color-coded for age of basalt host: dark blue is Paleozoic, green is Mesozoic, and black, gray and white is Cenozoic. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
2. Geological setting and samples

The South China Block is composed of the Yangtze Craton in the 
north and the Cathaysia block in the south (Fig. 1a), which were 
amalgamated ∼880 Ma ago (Li et al., 2009). Exposed basement 
in the Yangtze Craton is dominantly Proterozoic with scattered 
Archean outcrops (Qiu et al., 2000; Zhang et al., 2006). The latter 
include gneisses with ages of ∼2.9 Ga and metasedimentary rocks 
with zircons of 3.2–2.9 Ga (Qiu et al., 2000). Xenocrystic zircons 
from Paleozoic lamproite and kimberlite diatremes have U–Pb age 
peaks of 2.9–2.8 and 2.6–2.5 Ga and peaks of Hf depleted-mantle 
model ages at 3.5–2.6 Ga (Zheng et al., 2006). These observations 
suggest that the Yangtze Craton represents Archean basement that 
was reworked in the Proterozoic, most likely during the amalga-
mation of micro-continents (Zhao and Cawood, 2012). Cathaysia 
is composed mainly of Neoproterozoic crust with scattered ex-
posures of Paleoproterozoic basement rocks (Zhao and Cawood, 
2012). U–Pb ages and Hf-isotope systematics of xenocrystic zircons 
within the 166 Ma Pingle minettes and the 48–49 Ma Xiaoliudian 
and Shuangtian (Fig. 1b) basalts are Archean, showing that highly 
evolved Archean basement may underlie the block (Zheng et al., 
2011).

By the late Triassic, the South China Block appears to have 
amalgamated with the North China Craton along a suture repre-
sented by the Dabie–Sulu UHP belt. Both the North China Craton 
and the South China Block are small relative to many other cratons, 
and have been disturbed by post-Archean magmatic events and 
lithosphere thinning. In the Permian, the Emeishan flood basalts 
(Fig. 1b) were erupted in the western part of the Yangtze Craton 
(Chung and Jahn, 1995; Xu et al., 2004). In the Jurassic and Cre-
taceous, much of eastern China was intruded by granitic plutons, 
associated with a continental arc developed along the western Pa-
cific subduction system (Fig. 1a). Continental-arc magmatism ter-
minated in the Cenozoic, most likely due to the rollback of the 
western Pacific subduction zones. This rollback left a broad wake 
of lithospheric extension in southeastern China, as exemplified by 
the opening of the South China Sea and other early Tertiary basins 
(Chung et al., 1994).

One consequence of the Mesozoic–Cenozoic Pacific subduc-
tion system was the widespread generation of small-volume 
intra-plate basaltic volcanism, starting with Jurassic to Cretaceous 
basalts in the central part of Cathaysia Block followed by Ceno-
zoic basalts scattered throughout the southern and eastern parts 
(Fig. 1b). Many of these basalts contain mantle xenoliths, provid-
ing a window into the deep lithosphere. The xenoliths range from 
lherzolites (dominant) to harzburgites, mostly in the spinel facies 
and with minor garnet peridotites (DR Table 1). Pyroxenites are 
rare in the studied area, although some authors suggested that 
refertilization may form pyroxenite layers during magmatic un-
derplating at the Moho (e.g., Bodinier et al., 2008) and generate 
iron-rich garnet-bearing lithologies (e.g., eclogite) at depth.

3. Analytical methods

The data for ∼300 samples presented here combine new mea-
surements with data compiled from the literature. Sources of 
compiled data are given in DR Tables 2–5. For our data, whole-
rock major elements were determined by X-ray fluorescence (XRF), 
mineral major elements were determined by electron micro-
probe (EPMA), and mineral trace elements were determined by 
laser-ablation inductively coupled plasma mass spectrometry (LA-
ICPMS). Analyses were conducted at the State Key Laboratory of 
Geological Processes and Mineral Resources, China University of 
Geosciences (Wuhan). More details of analytical methods can be 
found in the Data Repository.

4. Results and discussions

Temperatures based on Ca in orthopyroxene coexisting with 
clinopyroxene, which yields similar results to two-pyroxene ther-
mometer, range from 750 to 1200 ◦C (DR Tables 2–5). Because of 
the lack of suitable barometers for spinel peridotites, equilibra-
tion pressures could not be calculated for these samples. Pres-
sures could only be calculated on the scarce garnet peridotites 
found in Cenozoic host basalts at four Cathaysian xenolith locali-
ties. Thermobarometric constraints based on garnet-orthopyroxene 
and two-pyroxene pairs (Brey and Kohler, 2000) record equilibra-
tion between 1.8–2.5 GPa and 1100–1250 ◦C. The average pres-
sure (2.15 GPa) is similar to the estimates (mean 2.20 GPa) for 
garnet peridotites (Foley et al., 2006). Importantly, the P –T con-
straints on each suite of garnet peridotites overlap and therefore 
define a common geotherm, which constrains the thickness of 
the Cathaysian lithosphere when the basalts erupted, as approxi-
mated by the intersection with the mantle adiabat, to be ∼100 km 
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Fig. 2. Xenolith systematics showing (a) thermobarometrically-determined pressure vs temperature, (b) whole rock MgO vs FeO, where FeO represents all Fe as FeO, (c) whole 
rock Mg# vs temperature, where Mg# = atomic Mg/(Mg + Fe) × 100, (d) and (e) whole rock Na2O and TiO2 vs MgO respectively. In (a), model steady-state conductive 
geotherms are pinned to a given surface heat flux (mW m−2) and crustal heat production taken from Rudnick et al. (1998). Near-vertical line corresponds to a mantle 
adiabat pinned to a mantle potential temperature T P of ∼1380 ◦C (Lee et al., 2009). Samples for which we have only temperature constraints are shown as a histogram 
at the bottom of the panel. In (b), red solid lines represent isothermal melting curves (which approximate adiabatic decompression) taken from Lee et al. (2011) following 
the approach in Langmuir and Hanson (1981). Gray dashed lines represent melting-degree (F) contours. Blue diagonal lines are contours of constant Mg#. Refertilization is 
shown by the green arrow and points toward a decrease in Mg#. In (c) to (e), PM represents primitive mantle (McDonough and Sun, 1995). In (d) and (e) blue and orange 
curves respectively show batch and fractional melting; purple arrows represent refertilization by melt with high Na2O and TiO2 contents (solid line) and low Na2O and TiO2

contents (dashed line), derived from the mixing between the refractory peridotite (Elthon, 1992) and basaltic melts with 1.6 wt% Na2O (0.5 wt% TiO2) and 0.3 wt% Na2O 
(0.3 wt% TiO2), respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
(Fig. 2a). The geotherm resembles a model steady-state conductive 
geotherm corresponding to a surface heat flux of ∼60–70 mW/m2

(also see Xu et al., 1996); this is similar to geotherms calculated for 
actively extending continental regions, such as the Basin and Range 
in western USA, and much hotter and thinner than those of typical 
cratons (∼40 mW/m2 and >200 km) (Pollack et al., 1993). This 
thin lithosphere is consistent with recent body-wave tomographic 
studies beneath the South China Block, which show high-velocity 
anomalies extending to depths of only ∼100 km (Huang and Zhao, 
2006; Li and van der Hilst, 2010).

To address whether such destabilization may have been driven 
by compositional changes, which in turn modify density, we 
mapped the compositional structure of the craton as a function 
of temperature, which we use as a qualitative proxy for relative 
depth. There is considerable variation in MgO and FeO (Fig. 2b), 
manifested as variations in Mg# (atomic Mg/(Mg + Fe) × 100), 
which increases with increasing melt extraction due to preferen-
tial removal of Fe into the melt and retention of Mg in the residue 
(Fig. 2c). Mg# varies from ultra-fertile values (<87) up to highly 
melt-depleted values (93). Much of the total range in Mg# is seen 
at each given temperature, indicating compositional heterogene-
ity at every level within the continental mantle. Also noteworthy 
is that the upper envelope Mg# does not vary significantly with 
temperature, but the lower envelope shows a subtle negative cor-
relation with temperature, suggesting weak tendency to greater 
fertility with depth.
While the ultra-fertile Mg# are considerably lower than esti-
mates for the modern fertile upper mantle (∼89) (McDonough 
and Sun, 1995), the Mg#s ranging up to 93 are peculiar because 
such high degrees of melt depletion are virtually non-existent in 
Phanerozoic peridotites, presumably because mantle potential tem-
peratures during the Phanerozoic were not hot enough (Lee et al., 
2011). Such high Mg#s are almost exclusively found in Archean 
cratonic mantle (Boyd and Mertzman, 1987; Griffin et al., 1999, 
2009; Zheng et al., 2001, 2007; Lee et al., 2009) and undoubtedly 
reflect the higher extents of melting involved in the formation of 
Archean cratonic mantle protoliths compared to the Phanerozoic. 
The low FeO contents of the high-Mg# South China Block xenoliths 
also are typical of Archean lithospheric mantle (Fig. 2b) and require 
temperatures of melting in excess of 1600 ◦C, much higher than 
the potential temperature of Phanerozoic mantle (∼1350–1400 ◦C) 
(Lee et al., 2009). The highest Mg# peridotites from the South 
China Block are likely to represent original cratonic mantle, and 
yet, as a whole, the overall thermal and compositional structure 
of the South China Block lithosphere does not look cratonic. Why 
does the South China Block not fit the standard view of cratons?

The presence of ultra-fertile peridotites, the high variability in 
Mg# at a given depth, and the overall decrease in Mg# with 
depth (Fig. 2c) suggest that silicate melts have infiltrated into orig-
inally depleted cratonic mantle, making it more fertile by melt-
rock reaction or impregnation (e.g., refertilization). Additional ev-
idence for melt infiltration is seen in the many xenoliths that 
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have whole-rock FeO contents higher than the convecting mantle 
(Fig. 2b). In addition, plots of MgO vs FeOt (Fig. 2b), and incompat-
ible elements like Na (Fig. 2d) and Ti (Fig. 2e) vs Mg do not plot 
on melt-depletion curves, which should be strongly hyperbolic; in-
stead, they plot on linear or scattered arrays, which are most easily 
explained by mixing processes like refertilization (Elthon, 1992;
Le Roux et al., 2007). On the other hand, the presence of a group 
of samples with intermediate Mg# values and equilibrium tem-
peratures around 900–1000 ◦C, which show correlations between 
temperature and metasomatic enrichment (including iron), sug-
gests the possible existence of small-scale temperature gradients 
in the wall rocks of melt conduits (e.g., Bodinier et al., 2008).

Studies of orogenic peridotites show that refertilization marked 
by modal enrichments are associated with chemical enrichments 
in Al, Ca, Na, Ti as well as decreasing Mg# values (e.g., Beyer et al., 
2006; Le Roux et al., 2007). However, Mg# generally does not de-
crease much below 89 in the case of diffuse refertilization, due to 
efficient buffering of the melts by olivine, and Fe remains roughly 
constant in whole rocks as the Mg# decrease tends to be balanced 
by a decrease in olivine proportion (Bodinier et al., 1990). The mas-
sifs nevertheless show two cases where Mg# may decrease well 
below 89 as a result of melt-rock interactions in a broad sense, se-
lective Fe (±Ti) enrichment in wall-rock of melt conduits (typically 
<25 cm, Bodinier et al., 1990). Fe enrichment may be extreme and 
is not coupled with modal refertilization, except for subtle “stealth 
metasomatism” (O’Reilly and Griffin, 2012), nor with Al, Ca and Na 
enrichment. This process has been recognized as a special form of 
metasomatism (Fe–Ti metasometism, Menzies and Hawkesworth, 
1987) and ascribed to processes that are specific to wall rocks of 
vein conduits and likely involve melt differentiation in conduits 
and diffusive Mg–Fe exchange into wall rocks. On the other hand, 
heterogeneous (veined) refertilization forming pyroxenite layers 
with a decrease in Mg# (<89) is favoured by a strong decrease in 
olivine proportion and high melt/rock ratios in high permeability 
channels (Bodinier et al., 2008). The heterogeneous refertilization 
can result in very low Mg# ratios (down to 85 or even less) but 
differs from the Fe–Ti metasomatism because the Mg# variation is 
coupled with substantial modal changes; rocks with Mg# ∼85 are 
virtually devoid of olivine (Bodinier et al., 2008).

Xenolith studies generally confirm the existence of these two 
processes, with a range of intermediate situations; for example, 
low-Mg# rocks are found in suites where igneous cumulate/segre-
gates are abundant, suggesting that they represent the host rocks 
of igneous intrusions (Ionov et al., 2005), or they are strongly re-
acted and interpreted as high-permeability channels (Raffone et 
al., 2009). Compositionally, the subcontinental lithosphere mantle 
beneath the South China Block is similar to unusually fertile litho-
spheric mantle beneath the Paleoproterozoic Aldan shield on the 
margin of the Siberian craton, which has also been interpreted 
to be the product of refertilization (Ionov et al., 2005). Exactly 
when such refertilization or refertilization events occurred is un-
known. However, the widespread occurrence of Mesozoic plutons 
throughout southeastern China (see Fig. 1a) indicates that heat and 
magmas were advected into the crust, which in turn suggests that 
mantle-derived magmas may have traversed the continental litho-
sphere, providing at least one window of opportunity for refertil-
ization.

We consider now the effect of refertilization on density. Us-
ing empirical parameterizations of density as a function of Mg#, 
ρ = −0.0144Mg# + 4.66, where ρ is in g/cm3 (Lee, 2003), the 
buoyancy of the South China Block mantle is determined by the 
density difference between the cratonic mantle and that of the 
ambient mantle, which we assume to be vigorously convecting 
and hence, characterized by an adiabatic temperature profile cor-
Fig. 3. Density anomaly versus temperature for peridotites from the South China 
Block. Calculations as described in the text. These anomalies represent densities 
calculated relative to a primitive mantle reference (Mg# = 89) and a potential 
temperature of 1380 ◦C, using parameterizations of Lee (2003). Diagonal lines corre-
spond to densities at constant Mg#. Horizontal zone at zero corresponds to neutral 
density. Black squares represent peridotite xenoliths from the South China Block 
in this study. Circles represent densities of xenoliths from stable Archean (white; 
Slave, South Africa, Tanzania, Siberia) and Proterozoic (gray; Colorado Plateau) cra-
tons from compilations in Lee et al. (2011).

responding to a specified mantle potential temperature T P . This 
density difference is given by

�ρc = ρc(Mg#, T P )
[
1 − α(Tc − T P )

] − ρo(T P ) (1)

where ρc (Mg#, T P ) is the density of a continental peridotite at 
T P , ρo is the density of the ambient convecting mantle at T P , α
is thermal expansivity (3 × 10−5 ◦C−1), and Tc is the continental 
peridotite’s temperature. We take T P to equal 1380 ◦C (Ionov et 
al., 2005) and reference density of the convecting upper mantle to 
correspond to Mg# = 89 (Lee et al., 2009), under the assumption 
that Mg# varies without mineralogical changes. When �ρc = 0, 
the low temperatures of the cratonic peridotites are compensated 
by compositional buoyancy and the continent is neutrally buoyant. 
In Fig. 3, �ρc is plotted against temperature – a proxy for depth – 
in the continental mantle.

Overall, peridotites from stable Archean cratons have, on av-
erage, zero net density anomalies because the compositional and 
temperature effects are compensatory (Lee, 2003). By contrast, 
most of peridotites from the South China Block show net posi-
tive density anomalies in excess of 0.05 g/cm3 (or ∼1.5%) due to 
their fertile compositions compared to ambient convecting man-
tle. These density excesses render the lithospheric mantle beneath 
the South China Block convectively unstable. The growth time of 
a convective instability is exponential with order-of-magnitude e-
fold growth time scaling as η(�ρg H)−1, where η is viscosity, g
is gravity, and H is the thickness of the denser layer (Conrad 
and Molnar, 1997). For a layer 10 km thick with a density ex-
cess of 0.05 g/cm3 (∼1.5%) and a viscosity of 1021 to 1022 Pa s, 
convective removal of this instability should have occurred within 
∼10–100 My. Thus, the density structure of the South China Block 
is likely to be a transient feature, from which it follows that desta-
bilization of these ultra-fertile domains must be happening now or 
recently (i.e., Phanerozoic), implying that refertilization itself may 
be an ongoing feature. The lack of Archean Re–Os isotopic model 
ages in mantle xenoliths from the South China Block (Fig. 4) is 
consistent with subsequent reworking of the mantle.

To decrease the Mg# of a melt-depleted peridotite from >91 
to <86, as seen in the subcontinental lithospheric mantle of the 
South China Block, large amounts of melt infiltration are required 
(Ionov et al., 2005), meaning that conditions beneath the litho-
sphere must have been favorable for melt generation at some point 
in time. The main factor controlling magma generation beneath 
a continent is the potential temperature of the mantle and the 
amount of “headspace” available for decompression melting. This 
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Fig. 4. Plots of 187Os/188Os vs Al2O3 of peridotites from the South China Block. Data 
sources can be found in DR Table 4. PM, primitive mantle (as in Figs. 2c to 2e).

“headspace” is bounded at its base by the depth at which the 
mantle adiabat crosses the solidus (which depends on T P ) and at 
its top by the thickness of the lithosphere (Langmuir et al., 1992;
Lee and Chin, 2014). Significant melting only occurs if the litho-
sphere is thinner than the initial depth of volatile-free melting 
(volatiles increase initial melting depth but generate only small 
amounts of additional melt). For a modern T P of ∼1350–1400 ◦C 
and allowing for 200 ◦C of lateral variability to account for plumes 
and small-scale convective instabilities, it can be seen that only 
lithospheres thinner than ∼150 km can ever be modified by refer-
tilization (Fig. 5). Thicker cratonic lithosphere can be split first and 
then affected by refertilization as documented for the Labrador Sea 
(Tappe et al., 2007; Foley, 2008).

For higher average T P , such as 1600 ◦C, which may have been 
more applicable to the Archean, lithospheres would have to be less 
than 230 km thick to be affected. That is, the critical thickness may 
evolve with secular cooling of the Earth. In any case, refertiliza-
tion, once initiated, could destabilize the base of the continental 
lithosphere, generating more “headspace”, which in turn promotes 
more melting below and hence more potential for refertilization. 
This positive feedback could lead to eventual destruction. We spec-
ulate that the South China Block may be an example of a relatively 
thin (i.e. initially <230 km), and hence ill-fated, continent. By 
contrast, boundary layers initially thicker than the average global 
melting depth should suppress melt generation and hence be rel-
atively immune to refertilization. Lithospheres born thick are thus 
usually, although not necessarily forever (cf. O’Reilly et al., 2001). 
The rejuvenation of cratons, dislodging of blocks (Foley, 2008) or 
formation of metacratons (Liegeois et al., 2013) may result in melt 
infiltration and refertilization.

5. Conclusions

Although compositional buoyancy plays an important role in 
stabilizing continents, this is not sufficient to preserve a craton 
if the compositional buoyancy can be destroyed by refertiliza-
tion. We suggest that the long-term fate of continents ultimately 
depends on their initial thickness, which modulates the extent 
of refertilization-driven destabilization. Other processes, such as 
hydration-induced weakening or viscous stresses associated with 
proximity to subduction zones could further enhance destabiliza-
tion, so relatively small and initially thin cratons would be even 
more prone to destabilization, as might have been the case for 
both the North China Craton and the South China Block. Un-
derstanding what dictates the structure of continents throughout 
Earth’s history is thus a key to their evolution. If our proposal is 
correct, long-lived continents must have been built thicker than 
the maximum depth of ambient melting at the time of their for-
mation (i.e., >250 km). If so, rapid tectonic thickening processes, 
including mantle overturns, might be necessary to form stable cra-
tons (Cooper et al., 2006; Griffin et al., 2009) as such thickening 
could depress the base of the lithosphere to below the depth of 
melt generation.
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